
The guide to Xillybus Lite

Xillybus Ltd.

www.xillybus.com

Version 3.0

1 Introduction 3

1.1 General . 3

1.2 Obtaining Xillybus Lite . 4

2 Usage 5

2.1 Sample design . 5

2.2 Interface with Host application . 6

2.3 Interface with logic design . 7

2.3.1 Register related signals . 7

2.3.2 Module hierarchy . 8

2.3.3 32-bit aligned register access . 9

2.3.4 Unaligned register access . 12

2.4 Interrupts . 16

3 Xillybus Lite on projects not using Xillinux 17

3.1 Applying the IP core . 17

3.2 Modifying the device tree . 21

3.3 Compilation of the Linux driver . 23

3.4 Installing the driver . 24

http://xillybus.com/

Xillybus Ltd. www.xillybus.com

3.5 Loading and unloading the driver . 25

The guide to Xillybus Lite 2

http://xillybus.com/

Xillybus Ltd. www.xillybus.com

1
Introduction

1.1 General

Xillybus Lite is a simple kit for easy access of registers in the logic fabric (PL) by
a user space program running under Linux. It presents an illusion of a bare-metal
environment to the software, and a trivial interface of address, data and read/write-
enable signals to the logic design.

Using this kit frees the development team from dealing with the AXI bus interface as
well as Linux kernel programming, and allows a straightforward memory-like control
of the peripheral without the need for any knowledge on the the operating system or
the bus protocol.

The kit consists of an IP core and a Linux driver. These are included in the Xillinux
distribution for the Zedboard (versions 1.1 and up), and are also available for download
separately for inclusion in projects.

Xillybus Lite does not involve any DMA functionality. The maximal data rate is around
28 MB/s (7 Million 32-bit accesses of reads or write per second, with the processor
clock at 666 MHz).

The Xillybus Lite IP core is released for any use at no cost. In particular, it may be
downloaded, copied and included in binaries used and sold for commercial purposes
with no limitation and without any additional consent nor specific licensing.

The Xillybus Lite driver for Linux is released under GPLv2, which makes it free for
distribution under the same terms as the Linux kernel itself.

The guide to Xillybus Lite 3

http://xillybus.com/

Xillybus Ltd. www.xillybus.com

1.2 Obtaining Xillybus Lite

For learning about Xillybus Lite and trying it out, it’s recommended to download and
install Xillinux (version 1.1 and above).

The distribution has everything set up for trying out Xillybus Lite on sample logic that
can be easily modified in xillydemo.v/vhd. The Linux side has the driver already in-
stalled and a couple of sample programs to start off with.

Xillinux can be downloaded at http://xillybus.com/xillinux

To verify that an existing installation is recent enough, the following check can be run
at the shell prompt on Xillinux:

uname -r

3.3.0-xillinux-1.1+

The suffix (“1.1” in the example above) shows the Xillinux version (which is OK in this
case).

Xillybus Lite can be included in any Zynq-7000 design, regardless of Xillinux. This
requires the inclusion of the IP core in the XPS project, some wiring, compilation and
installation of the driver, as described in section 3.

The Xillybus Lite bundle can be downloaded at http://xillybus.com/xillybus-lite

The guide to Xillybus Lite 4

http://xillybus.com/
http://xillybus.com/xillinux
http://xillybus.com/xillybus-lite

Xillybus Ltd. www.xillybus.com

2
Usage

2.1 Sample design

A sample design, consisting of a connected IP core, a preinstalled Linux driver and a
couple of simple demo user space programs is included in Xillinux (versions 1.1 and
later).

On the logic side, the xillydemo.v(hd) module source file contains an implementation
of a 32x32 bit RAM, which is inferred from an array. This RAM is accessed in the
host’s sample program. Its compilation and execution can be done directly on Xillinux
as follows:

make

gcc -g -Wall -I. -O3 -c -o uiotest.o uiotest.c

gcc -g -Wall -I. -O3 uiotest.o -o uiotest

gcc -g -Wall -I. -O3 -c -o intdemo.o intdemo.c

gcc -g -Wall -I. -O3 intdemo.o -o intdemo

./uiotest /dev/uio0 4096

0 1 2 3

The C sources can be found in Xillinux’ file systems at /usr/src/xillinux/xillybus-lite/
(version 1.1 and up).

The “uiotest” program merely writes four values to the first 32-bit elements in the
register array, and then reads back and prints their values, but it’s easily changed into
something more useful.

The “intdemo” program shows how interrupts are handled. Since the sample logic
doesn’t trigger any interrupts, there’s no point running it as is. Nevertheless, it shows
how interrupts are waited for.

The guide to Xillybus Lite 5

http://xillybus.com/

Xillybus Ltd. www.xillybus.com

2.2 Interface with Host application

Xillybus Lite is based upon Linux’ User I/O interface (UIO), which represents a periph-
eral as a device file which is primarily accessed by its memory mapping. To obtain
access, the following code applies:

#include <sys/mman.h>

int fd;

void *map_addr;

int size = ...;

fd = open("/dev/uio0", O_RDWR);

if (fd < 0) {

perror("Failed to open devfile");

exit(1);

}

map_addr = mmap(NULL, size, PROT_READ | PROT_WRITE, MAP_SHARED,

fd, 0);

if (map_addr == MAP_FAILED) {

perror("Failed to mmap");

exit(1);

}

Except for error checking, this code snippet performs two operations:

• Calling the function open() to open the device file (obtaining a file handle).

• Calling the function mmap() to obtain an address for accessing the device. The
second parameter (“size”) is the number of bytes that are mapped. It must not
exceed the number of bytes allocated for the peripheral, according to the device
tree (4096 on unmodified Xillinux).

map addr is an address in the virtual memory space of the process, but for all pur-
poses it can be treated as if it was the physical address to which the peripheral is
mapped in a bare-metal environment (i.e. with no operating system).

The allowed access range goes from mem addr to mem addr + size - 1, where “size”
is the second argument given to mmap(). Attempting to access memory beyond this
range may cause a segmentation fault.

The guide to Xillybus Lite 6

http://xillybus.com/

Xillybus Ltd. www.xillybus.com

With the address at hand, writing and reading a 32-bit word to the register at the
peripheral’s base address (offset zero) is just:

volatile unsigned int *pointer = map_addr;

*pointer = the_value_to_write;

the_value_read_from_register = *pointer;

On the specific memory region, memory caching is disabled by the Linux driver, and
the pointer is flagged volatile. Hence each read and write operation in the program
triggers a bus operation, and consequently an access cycle on the Xillybus Lite’s logic
interface signals.

IMPORTANT:

The pointer must be flagged as volatile with the “volatile” keyword, as shown in
the example above. The lack of this flag will allow the C compiler to reorder and
possibly optimize out I/O operations.

It is also fine to access the peripheral with an 8-bit volatile char pointer or a 16-bit
volatile short int pointer, provided that the logic supports byte granularity access.

In the example above, it’s assumed that only one Xillybus Lite peripheral is present.
The first instance, “/dev/uio0” is therefore opened. If additional UIO devices are
present (e.g. there’s more than one Xillybus Lite instance), they are represented as
/dev/uio1, /dev/uio2, etc.

In order to know which device file belongs to which logic element, the application
should obtain the information in /sys/class/uio/ (e.g. /sys/class/uio/uio0/name or /sys/-
class/uio/uio0/maps/map0/addr). The udev framework is recommended for consistent
naming of the device files when several UIO devices are created.

2.3 Interface with logic design

2.3.1 Register related signals

The Xillybus Lite IP core presents seven signals to the application logic, given here in
Verilog format:

The guide to Xillybus Lite 7

http://xillybus.com/

Xillybus Ltd. www.xillybus.com

output user_clk;

output [31:0] user_addr;

output user_wren;

output [3:0] user_wstrb;

output [31:0] user_wr_data;

output user_rden;

input [31:0] user_rd_data;

The interface is synchronous, and based upon user clk, which is provided by Xillybus
Lite (it’s wired to the AXI Lite clock of the processor).

The signal names above are those appearing in the Xillydemo module (part of the
Xillinux bundle). The signals’ names in the processor’s module are slightly different,
e.g. user wren may appear as xillybus lite 0 user wren pin.

These signals can be connected directly to a standard block RAM, in which case the
host gets direct access to that RAM (which can be used as a “mailbox” if a dual-port
RAM is chosen). They can also be connected to registers defined in logic, as detailed
below.

2.3.2 Module hierarchy

When a Xilinx logic design involves an embedded processor, there is a module rep-
resenting it, typically instantiated in the top level module. Usually, the ports exposed
by this module are all connected directly to physical pins, following the paradigm that
the processor is the center of things, and that any logic around it is some kind of
peripheral.

Xillybus Lite is intended for interfacing with a substantial piece of application logic, and
therefore breaks this common structure somewhat: Its user * signals are intended for
routing to the top level module, so custom logic is instantiated in that top level module
as well. The overall project’s structure ends up in two large chunks: An instantiated
module that contains a processor and its IP cores (including the Xillybus Lite IP core)
and a second module with the application logic. The user * signals connect between
the two.

So even though the Xillybus Lite IP core itself is instantiated by Xilinx’ tools somewhere
deep inside the processor’s hierarchy, it is interfaced with from the top level module.

The guide to Xillybus Lite 8

http://xillybus.com/

Xillybus Ltd. www.xillybus.com

This is the chosen layout in the demo bundle for Xillinux (shown in the drawing below)
and also what this guide assumes. It’s possible to connect Xillybus Lite’s signals
internally within the processor’s hierarchy, but it’s not necessarily going to make things
simpler.

2.3.3 32-bit aligned register access

To access a 32x32 bit array in the logic (“litearray” below), code like the following can
be used. This works fine only if the host sticks to 32-bit word access (using pointers
to e.g. unsigned int only):

In Verilog:

always @(posedge user_clk)

begin

if (user_wren)

litearray[user_addr[6:2]] <= user_wr_data;

if (user_rden)

user_rd_data <= litearray[user_addr[6:2]];

end

The guide to Xillybus Lite 9

http://xillybus.com/

Xillybus Ltd. www.xillybus.com

Or in VHDL:

lite_addr <= conv_integer(user_addr(6 DOWNTO 2));

process (user_clk)

begin

if (user_clk’event and user_clk = ’1’) then

if (user_wren = ’1’) then

litearray(lite_addr) <= user_wr_data;

end if;

if (user_rden = ’1’) then

user_rd_data <= litearray(lite_addr);

end if;

end if;

end process;

The waveforms for an aligned write cycle and any read cycle are:

Waveform 1: Write cycle for aligned access

The guide to Xillybus Lite 10

http://xillybus.com/

Xillybus Ltd. www.xillybus.com

Waveform 2: Read cycle

Notes:

• Any bus operation on the address region allocated in XPS to the Xillybus Lite
peripheral always results in user wren or user rden being high for exactly one
clock cycle.

• The user rd data is sensed by the Xillybus Lite core only one clock cycle after
user rden is high. There is hence no practical need to monitor user rden: It’s
also fine to always update user rd data depending on user addr (with one clock’s
latency), for instance,

always @(posedge user_clk)

user_rd_data <= litearray[user_addr[6:2]];

• The code above demonstrates access of a 32-bit wide array of 32 elements. A
more common setting is accessing registers e.g. in Verilog

always @(posedge user_clk)

if ((user_wren) && (user_addr[6:2] == 5))

myregister <= user_wr_data;

for mapping “myregister” at address offset 0x14.

• Likewise, a case statement that depends on user addr is the common imple-
mentation of user rd data’s value assignment, such as

The guide to Xillybus Lite 11

http://xillybus.com/

Xillybus Ltd. www.xillybus.com

always @(posedge user_clk)

case (user_addr[6:2])

5: user_rd_data <= myregister;

6: user_rd_data <= hisregister;

7: user_rd_data <= herregister;

default: user_rd_data <= 0;

endcase

• user addr is 32 bit wide, and holds the full physical address being accessed.
Since the enable signals are high only when the address is within the allocated
range, there is no need to verify the address’ MSBs.

• Always ignore user addr[1:0]. These two LSBs are always zero on 32-bit aligned
bus accesses, and as explained below, they should be ignored even for un-
aligned access.

2.3.4 Unaligned register access

When there’s a possibility that the host will access the register space in a 32-bit un-
aligned manner, each byte needs to be handled separately in the logic.

Note that accessing a byte and a 32-bit word on the bus take the same time, so
unaligned access is bandwidth inefficient by four times.

Suppose that litearray3, litearray2, litearray1 and litearray0 are memory arrays of 32
elements with 8 bits each. The following code snippets demonstrate how the exam-

The guide to Xillybus Lite 12

http://xillybus.com/

Xillybus Ltd. www.xillybus.com

ples in 2.3.3 are rewritten to support unaligned access. In Verilog:

always @(posedge user_clk)

begin

if (user_wstrb[0])

litearray0[user_addr[6:2]] <= user_wr_data[7:0];

if (user_wstrb[1])

litearray1[user_addr[6:2]] <= user_wr_data[15:8];

if (user_wstrb[2])

litearray2[user_addr[6:2]] <= user_wr_data[23:16];

if (user_wstrb[3])

litearray3[user_addr[6:2]] <= user_wr_data[31:24];

if (user_rden)

user_rd_data <= { litearray3[user_addr[6:2]],

litearray2[user_addr[6:2]],

litearray1[user_addr[6:2]],

litearray0[user_addr[6:2]] };

end

The guide to Xillybus Lite 13

http://xillybus.com/

Xillybus Ltd. www.xillybus.com

Or in VHDL:

lite_addr <= conv_integer(user_addr(6 DOWNTO 2));

process (user_clk)

begin

if (user_clk’event and user_clk = ’1’) then

if (user_wstrb(0) = ’1’) then

litearray0(lite_addr) <= user_wr_data(7 DOWNTO 0);

end if;

if (user_wstrb(1) = ’1’) then

litearray1(lite_addr) <= user_wr_data(15 DOWNTO 8);

end if;

if (user_wstrb(2) = ’1’) then

litearray2(lite_addr) <= user_wr_data(23 DOWNTO 16);

end if;

if (user_wstrb(3) = ’1’) then

litearray3(lite_addr) <= user_wr_data(31 DOWNTO 24);

end if;

if (user_rden = ’1’) then

user_rd_data <= litearray3(lite_addr) & litearray2(lite_addr) &

litearray1(lite_addr) & litearray0(lite_addr);

end if;

end if;

end process;

The waveform for an unaligned write cycle on a single byte with 0x01 offset from the
base address follows.

The guide to Xillybus Lite 14

http://xillybus.com/

Xillybus Ltd. www.xillybus.com

Waveform 3: Write cycle for unaligned access (byte offset 0x01 shown)

Notes:

• A write bus operation on the allocated address region always results in user wren
and at least one of user wstrb’s bits being high simultaneously for one clock cy-
cle. As shown above, if the value assignment depends on user wstrb, there is
no need to check user wren.

• Unaligned read accesses are handled the same by the logic as aligned ones.
For example, when the program running on the processor reads a byte, the
whole 32-bit word is read on the bus, and the processor picks the required por-
tion from the word.

• user addr[1:0] may be non-zero when the address required by the processor is
unaligned. This has no significance, since the logic’s correct behavior on write
cycles depends on user wstrb only. These two bits are therefore best ignored
even for unaligned access.

The guide to Xillybus Lite 15

http://xillybus.com/

Xillybus Ltd. www.xillybus.com

2.4 Interrupts

The Xillybus Lite IP core exposes an input signal, user irq, which allows the application
logic to send hardware interrupts to the processor. It is treated as a synchronous
positive edge-triggered interrupt request signal, i.e. an interrupt is generated when
this signal changes from low to high from one clock cycle to the next.

This signal is held zero in the xillydemo.v(hd) module.

Xillybus Lite adopts UIO’s method of handling interrupts: The user space program
sleeps as it attempts to read data from the device file. When the interrupt arrives,
four bytes of data is read, waking up the process. These four bytes should be treated
as an unsigned int, having the value of the total number of interrupts that have been
triggered since the driver was loaded. The program may ignore this value, or use it to
check if interrupts have been missed, by verifying that the value is one plus the value
previously read.

Note that in a normal system’s operation, this interrupt counter is never zeroed.

For example, assuming that “fd” is the file handle to /dev/uio0:

unsigned int interrupt_count;

int rc;

while (1) {

rc = read(fd, &interrupt_count, sizeof(interrupt_count));

if ((rc < 0) && (errno == EINTR))

continue;

if (rc < 0) {

perror("read");

exit(1);

}

printf("Received interrupt, count is %d\n", interrupt_count);

}

Note that the read() function call must require 4 bytes. Any other length argument will
return an error. The interrupt file descriptor may be used in select() function calls.

Also note that the part checking for EINTR handles software interrupts properly (e.g.
the process being stopped and restarted) and has nothing to do with the hardware
interrupt.

The guide to Xillybus Lite 16

http://xillybus.com/

Xillybus Ltd. www.xillybus.com

3
Xillybus Lite on projects not using Xillinux

3.1 Applying the IP core

The procedure described next is based upon Xilinx Platform Studio 14.2 (XPS), but
later versions are expected to behave much the same.

To add Xillybus Lite to an existing project, follow the steps below:

• Download the Xillybus Lite bundle from http://xillybus.com/xillybus-lite.

• Copy the xillybus lite v1 00 a folder from Xillybus Lite’s bundle’s “pcores” folder
into your XPS project’s “pcores” folder. The latter may be empty if the XPS
project was just generated.

• With the relevant project open in XPS, click Project > Rescan User Reposito-
ries. As a result, a “USER” entry will appear in the IP Catalog to the left, under
“Project Local PCores”. Expand this entry, and find the XILLYBUS LITE core.

The guide to Xillybus Lite 17

http://xillybus.com/
http://xillybus.com/xillybus-lite

Xillybus Ltd. www.xillybus.com

• Double-click XILLYBUS LITE. Confirm the popup window asking whether the IP
core should be added to the design.

• An XPS Core Config window appears next. Just click “OK”. There is no need for
changes.

• On the following window, “Instantiate and Connect IP” allow XPS to make the
bus interface connections by choosing the upper radio button.

The guide to Xillybus Lite 18

http://xillybus.com/

Xillybus Ltd. www.xillybus.com

• Pick the “Addresses” tab and take note of the address range allocated for xilly-
bus lite 0 for future reference (Base address and Size). It’s also possible to
change this range as necessary.

• Pick the “Zynq” tab and click on the IRQ box. Select the “host interrupt” port in
the list of unconnected interrupts, and click on the arrow in the middle to move it
to the list of connected interrupts. Take a note of the interrupt number (91 in the
sample screenshot).

The guide to Xillybus Lite 19

http://xillybus.com/

Xillybus Ltd. www.xillybus.com

• Pick the “Ports” tab and expand the “xillybus lite 0” entry. For each of the eight
signals with “user ” prefix, click on the empty space to the right of the port’s
name, and make the port external:

Pick “External Port” on the drop-down selection box, and accept the default wire
name given (or possibly change it). Confirm by clicking the check mark or press-
ing ENTER for each port.

IMPORTANT:

The host interrupt port is set to EDGE RISING. Don’t change it to level triggered,
or an interrupt may lock up the system.

The guide to Xillybus Lite 20

http://xillybus.com/

Xillybus Ltd. www.xillybus.com

The XPS project is now ready for build (with e.g. “Create Netlist”).

The processor’s module (usually named “system”) will have 8 additional ports. These
should be added in this module’s instantiation (and architecture description in VHDL).

For example, in Verilog

...

wire user_clk;

wire user_wren;

wire [3:0] user_wstrb;

wire user_rden;

wire [31:0] user_rd_data;

wire [31:0] user_wr_data;

wire [31:0] user_addr;

wire user_irq;

...

system

system_i (

...

.xillybus_lite_0_user_clk_pin (user_clk),

.xillybus_lite_0_user_wren_pin (user_wren),

.xillybus_lite_0_user_wstrb_pin (user_wstrb),

.xillybus_lite_0_user_rden_pin (user_rden),

.xillybus_lite_0_user_rd_data_pin (user_rd_data),

.xillybus_lite_0_user_wr_data_pin (user_wr_data),

.xillybus_lite_0_user_addr_pin (user_addr),

.xillybus_lite_0_user_irq_pin (user_irq)

);

All signals except user rd data and user irq are outputs from the processor.

3.2 Modifying the device tree

The device tree for the existing system must be obtained, so that an entry for Xillybus
Lite can be added. It’s important to start from the device tree in effect, or the system’s
configuration may change or possibly even fail in the boot process.

For Xillinux 2.0 and later, the device tree sources in use are part of the kernel source,

The guide to Xillybus Lite 21

http://xillybus.com/

Xillybus Ltd. www.xillybus.com

which can be downloaded from Github. Please refer to section 6 in Getting started
with Xillinux for Zynq-7000 on how to obtain this.

In earlier revisions of Xillinux, the device tree source is in the /boot directory as e.g.
devicetree-3.3.0-xillinux-1.1.dts.

If the device tree sources isn’t available, it can be reconstructed from its binary, which
is available in the same directory which boot.bin is loaded from on powerup. A tutorial
explaining this issue (and others related to the device tree) can be found at

http://xillybus.com/tutorials/device-tree-zynq-1

An entry as follows should be added to the DTS file, in the segment containing bus
peripherals (within the curly brackets enclosing axi@0):

xillybus_lite@6dc00000 {

compatible = "xillybus_lite_of-1.00.a";

reg = < 0x6dc00000 0x10000 >;

interrupts = < 0 59 1 >;

interrupt-parent = <&gic>;

} ;

IMPORTANT:

This sample entry matches the screenshots shown above, and not the settings
used in Xillinux.

The following changes may be needed in the DTS entry to match your instance of the
peripheral in the XPS project:

• Set the base address, taken from the address map of XPS, in the “reg” assign-
ment and in the node’s name (0x6dc00000 above, without the “0x” prefix in the
node’s name).

• Set the second argument of “reg” to the number of bytes allocated from the base
address (0x10000 above)

• Set the second argument of “interrupts” to the interrupt number given in XPS
minus 32. In the example, XPS allocated interrupt 91 to the peripheral, and
consequently 91 - 32 = 59.

• If the device tree was been obtained by virtue of a reverse compilation from
a binary or /proc/device-tree/, it will not have the “gic” label defined. Since all

The guide to Xillybus Lite 22

http://xillybus.com/
http://xillybus.com/downloads/doc/xillybus_getting_started_zynq.pdf
http://xillybus.com/downloads/doc/xillybus_getting_started_zynq.pdf
http://xillybus.com/tutorials/device-tree-zynq-1

Xillybus Ltd. www.xillybus.com

devices in the system use the same interrupt controller, it’s fine to copy the
numeric value from other “interrupt-parent” assignment in the device tree. In
almost all cases, this simply means replacing &gic with the value 0x1.

After editing the device tree source file, run a compilation to turn it into a binary blob
(DTB) with the Device Tree Compiler (DTC). This compiler is part of the Linux kernel
tree.

On a running Xillinux system, this can be done as follows. The directory of the kernel
tree may vary, depending on the Xillinux distribution used.

cd /usr/src/kernels/3.3.0-xillinux-1.1+/

scripts/dtc/dtc -I dts -O dtb -o devicetree.dtb my_device_tree.dts

Then overwrite the existing devicetree.dtb file on the media used for boot, with the file
just generated.

Note that Xillinux can be used for compilation of a device tree that is intended for a
system other than Xillinux.

3.3 Compilation of the Linux driver

The driver can be found in the Xillybus Lite bundle, in the “linuxdriver” directory.

There are two options for its compilation:

• cross compilation for the ARM processor against the intended kernel’s source
code (or at least its headers).

• Direct compilation on the Zynq board itself is possible, if the intended distribution
has the GNU tools and kernel headers installed.

Xillybus lite relies on several kernel options, in particular the UIO option (CONFIG UIO)
being enabled at least as a module.

In what follows, a direct compilation on the board is assumed. This can be done in the
Xillinux distribution, but isn’t necessary for running Xillybus Lite on Xillinux (since the
driver is already installed). On the other hand, if compilation of the driver has been
done on Xillinux (and hence against Xillinux’ kernel headers), the binary may not work
on other kernels.

First change directory:

$ cd /path/to/linuxdriver

The guide to Xillybus Lite 23

http://xillybus.com/

Xillybus Ltd. www.xillybus.com

and type “make” to for a compilation of the driver. The session should look something
like this:

$ make

make -C /lib/modules/3.3.0/build SUBDIRS=/tmp/lite/linuxdriver modules

make[1]: Entering directory ‘/usr/src/kernels/3.3.0’

CC [M] /tmp/lite/linuxdriver/xillybus_lite_of.o

Building modules, stage 2.

MODPOST 1 modules

CC /tmp/lite/linuxdriver/xillybus_lite_of.mod.o

LD [M] /tmp/lite/linuxdriver/xillybus_lite_of.ko

make[1]: Leaving directory ‘/usr/src/kernels/3.3.0’

Note that the compilation of the kernel module is done specifically for the kernel run-
ning during the compilation. If another kernel is used, type “make TARGET=kernel-
version” where “kernel-version” is the intended kernel version, as it appears in /lib/-
modules/.

The session’s output may vary slightly, but no errors or warnings should appear.

In particular, if these warnings appear,

WARNING: "__uio_register_device" [xillybus_lite_of.ko] undefined!

WARNING: "uio_unregister_device" [xillybus_lite_of.ko] undefined!

it means that the intended kernel lacks the UIO option, and inserting the driver into
the kernel will most likely fail.

3.4 Installing the driver

Copy the xillybus lite of.ko directory to some existing driver subdirectory, and run dep-
mod as follows (assuming that the intended kernel is currently running):

cp xillybus_lite_of.ko /lib/modules/$(uname -r)/kernel/drivers/char/

depmod -a

The installation does not load the driver into the kernel immediately. It will do so on
the next boot of the system if a Xillybus Lite peripheral is discovered. How to load the
driver manually is shown next.

The guide to Xillybus Lite 24

http://xillybus.com/

Xillybus Ltd. www.xillybus.com

3.5 Loading and unloading the driver

In order to load the driver (and start working with Xillybus Lite), type as root:

modprobe xillybus_lite_of

This will make the Xillybus Lite device file (/dev/uio0) appear.

Note that this should not be necessary if a Xillybus Lite peripheral was present when
the system carried out boot and the driver was already installed as described above.

To see a list of modules in the kernel, type “lsmod”. To remove the driver from the
kernel, go:

rmmod xillybus_lite_of

This will make the device file vanish.

If something seems to have gone wrong, please check up the /var/log/syslog log file
for messages containing the word “xillybus”. Valuable clues are often found in this log
file.

If no /var/log/syslog log file exists, it’s probably /var/log/messages instead.

If an “unknown symbol” error regarding uio register device or similar appears in the
log files, it indicates that the running kernel lacks the UIO configuration option.

The guide to Xillybus Lite 25

http://xillybus.com/

	Introduction
	General
	Obtaining Xillybus Lite

	Usage
	Sample design
	Interface with Host application
	Interface with logic design
	Register related signals
	Module hierarchy
	32-bit aligned register access
	Unaligned register access

	Interrupts

	Xillybus Lite on projects not using Xillinux
	Applying the IP core
	Modifying the device tree
	Compilation of the Linux driver
	Installing the driver
	Loading and unloading the driver

