
Getting started with the FPGA demo bundle for Xilinx

Xillybus Ltd.

www.xillybus.com

Version 3.3

1 Introduction 3

2 Prerequisites 5

2.1 Hardware . 5

2.2 FPGA project . 5

2.3 Development software . 6

2.4 Experience with FPGA design . 7

3 The implementation of the demo bundle 8

3.1 Overview . 8

3.2 File outline . 9

3.3 Generating the bitstream file with Vivado 10

3.4 Setting up Xilinx’ PCIe IP core . 12

3.5 Generating the bit file with the ISE suite 12

3.6 Loading the bitfile . 14

4 Modifications 16

4.1 Integration with custom logic . 16

4.2 Inclusion in a custom project . 17

4.3 Using other boards . 18

http://xillybus.com/

Xillybus Ltd. www.xillybus.com

4.3.1 General . 18

4.3.2 Using Xillybus for PCIe . 18

4.3.3 Working with Spartan-6 PCIe boards 19

4.3.4 Working with Virtex-6 PCIe boards 19

4.3.5 Working with Virtex-5 PCIe boards 20

4.3.6 Working with Kintex-7, Virtex-7 and Artix-7 boards (PCIe) 20

4.3.7 Working with Ultrascale and Ultrascale+ boards (PCIe) 21

4.3.8 Working with Versal ACAP boards (PCIe) 22

4.3.9 Working with XillyUSB . 23

4.4 PRSNT pins for indicating the number of PCIe lanes 24

4.5 Changing the number of PCIe lanes and/or link speed 24

4.5.1 Introduction . 24

4.5.2 The work procedure . 25

4.5.3 Has the PIPE frequency changed? 27

4.5.4 Adapting the timing constraints 29

4.5.5 Updating the PIPE clock module 30

4.6 Changing the FPGA part number . 31

5 Troubleshooting 33

5.1 Errors during implementation . 33

5.2 PCIe Hardware problems . 33

Getting started with the FPGA demo bundle for Xilinx 2

http://xillybus.com/

Xillybus Ltd. www.xillybus.com

1
Introduction

Xillybus is a DMA-based end-to-end solution for data transport between an FPGA and
a host that runs Linux or Microsoft Windows. It offers a simple and intuitive interface
to the designer of the FPGA logic as well as to the programmer of the software.

Application
FIFO

full

wr_en

data

Xillybus
IP core

Application
FIFO

empty

rd_en

data

Xilinx’
PCIe

interface
core

(coregen)

PCIe busto application
logic

As shown above, the application logic on the FPGA only needs to interact with stan-
dard FIFOs.

For example, writing data to the lower FIFO in the diagram makes the Xillybus IP core
sense that data is available for transmission in the FIFO’s other end. Soon, the IP
core reads the data from the FIFO and sends it to the host, making it readable by the
userspace software. The data transport mechanism is transparent to the application
logic in the FPGA, which merely interacts with the FIFO.

On its other side, the Xillybus IP core implements the data flow utilizing PCI Express’
Transport Layer level, generating and receiving TLP packets. For the lower layers, it
relies on Xilinx’ official PCIe core, which is part of the development tools, and requires
no additional license (even when using the WebPACK edition).

Getting started with the FPGA demo bundle for Xilinx 3

http://xillybus.com/

Xillybus Ltd. www.xillybus.com

The application on the computer interacts with device files that behave like named
pipes. The Xillybus IP core and driver transport data efficiently and intuitively between
the FIFOs in the FPGAs and their related device files on the host.

With XillyUSB, an MGT transceiver is used to implement an USB 3.0 interface, which
is used for data transport instead of the PCIe interface mentioned above.

The IP core is built instantly per customer’s spec, using an online web application.
The number of streams, their direction and other attributes are defined by customer
to achieve an optimal balance between bandwidth performance, synchronization, and
simplicity of design. After going through the preparation steps with the demo bundle,
as described in this guide, it’s recommended to build and download your custom IP
core at http://xillybus.com/custom-ip-factory.

This guide explains how to rapidly set up the FPGA with a Xillybus IP core, which can
be attached to user-supplied data sources and data consumers, for real application
scenario testing. The IP core is included in a demo bundle, which can be downloaded
at the website.

Despite its name, the demo bundle is not a demonstration kit, but a fully functional
starter design, which can perform useful tasks as is.

For those who are curious, a brief explanation on how Xillybus is implemented can be
found in Appendix A of either Xillybus host application programming guide for Linux or
Xillybus host application programming guide for Windows.

Getting started with the FPGA demo bundle for Xilinx 4

http://xillybus.com/
http://xillybus.com/custom-ip-factory
http://xillybus.com/downloads/doc/xillybus_host_programming_guide_linux.pdf
http://xillybus.com/downloads/doc/xillybus_host_programming_guide_windows.pdf

Xillybus Ltd. www.xillybus.com

2
Prerequisites

2.1 Hardware

The Xillybus FPGA demo bundle is packaged to work with several boards and devices,
as listed on the download pages (see section 2.2 below).

Owners of other boards may run a demo bundle on their own hardware after making
the necessary changes in pin placements and verifying that the MGT’s reference clock
is handled properly. This should be straightforward to any fairly experienced FPGA
engineer. More about this in section 4.3.

2.2 FPGA project

The Xillybus demo bundle is available for download at Xillybus site’s download pages.
For the PCIe-based cores:

http://xillybus.com/pcie-download

And for XillyUSB:

http://xillybus.com/usb-download

The demo bundle includes a specific configuration of the Xillybus IP core, which is
intended for simple tests. Therefore, it has a relatively poor performance for certain
applications.

Custom IP cores can be configured, automatically built and downloaded using the
IP Core Factory web application. Please visit http://xillybus.com/custom-ip-factory for
using this tool.

Any downloaded bundle, including the Xillybus IP core, is free for use, as long as this

Getting started with the FPGA demo bundle for Xilinx 5

http://xillybus.com/
http://xillybus.com/pcie-download
http://xillybus.com/usb-download
http://xillybus.com/custom-ip-factory

Xillybus Ltd. www.xillybus.com

use reasonably matches the term “evaluation”. This includes incorporating the core in
end-user designs, running real-life data and field testing. There is no limitation on how
the core is used, as long as the sole purpose of this use is to evaluate its capabilities
and fitness for a certain application.

2.3 Development software

The recommended tool for the implementation of Xillybus’ demo bundle (as well as
other designs involving Xillybus) is listed below, depending on the FPGA’s family.

Xillybus for PCIe:

As of today, it’s almost certain that the Vivado version that is installed on your computer
is suitable for working with Xillybus for PCIe. Nevertheless, these are the requirements
in more detail:

• When using Virtex-5 FPGAs, the Xilinx ISE 13.1 version is preferred, see para-
graph 4.3.5.

• For Spartan-6 and Virtex-6, use Xilinx ISE 13.2 and later.

• For Kintex-7 and Virtex-7 with Gen2 interface (all Virtex-7 that aren’t XT/HT,
and 485T too), Vivado 2014.1 and later is the preferred tool. Among the ISE
revisions, version 14.2 and later is recommended.

• For Virtex-7 with Gen3 interface (XT/HT except 485T), Vivado 2014.1 and later
is preferred. If ISE is chosen, revision 14.6 and later is required.

• For Artix-7, Vivado 2014.1 and later should be used. ISE 14.6 and later is fine
as well.

• For Kintex / Virtex Ultrascale, Vivado 2015.2 and later should be used. No ISE
revision supports these devices.

• Ultrascale+ FPGAs require Vivado 2017.3 and later.

• Versal APAC FPGAs require Vivado 2021.2 and later.

XillyUSB:

• For all FPGAs except Ultrascale+, Vivado 2015.2 and later should be used.

• For Ultrascale+, Vivado 2018.3 and later should be used.

Getting started with the FPGA demo bundle for Xilinx 6

http://xillybus.com/

Xillybus Ltd. www.xillybus.com

This software can be downloaded directly from Xilinx’ website (http://www.xilinx.com).

Any of this software’s editions is suitable. If the FPGA is covered by the WebPACK
Edition, this edition may be the preferred choice, as it can be downloaded and used
with no license fee for an unlimited time.

The implementation of Xillybus relies on some IP cores that are supplied by Xilinx. All
software editions cover these IP cores, without any need for additional licensing.

2.4 Experience with FPGA design

When the design is intended for a board that appears in the list of demo bundles, no
previous experience with FPGA design is necessary to have the demo bundle working
on the FPGA. When other boards are used, it’s required to have some knowledge with
using Xilinx’ tools, in particular defining pin placements and clocks.

To make the most of the demo bundle, a good understanding of logic design tech-
niques, as well as mastering an HDL language (Verilog or VHDL) are necessary.
Nevertheless, the Xillybus demo bundle is a good starting point for learning these, as
it presents a simple starter design to experiment with.

Getting started with the FPGA demo bundle for Xilinx 7

http://xillybus.com/
http://www.xilinx.com

Xillybus Ltd. www.xillybus.com

3
The implementation of the demo bundle

3.1 Overview

For Vivado users who want to skip reading everything below, these are the steps for
running the first implementation:

• Uncompress the demo bundle to a working directory.

• Start Vivado, or close any open project if Vivado is already running.

• Pick Tools > Run Tcl Script... and choose xillydemo-vivado.tcl in verilog/ or
vhdl/ (inside the demo bundle).

• Click “Generate Bitstream” (or “Generate Device Image”).

• After a successful implementation, find the bitstream file in vivado/xillydemo.runs/impl 1/.

And now to the longer story: There are three possible methods for the implementation
of Xillybus’ demo bundle, and obtaining a bit stream file:

• Using the project files in the bundle as they are. This is the simplest way, and
is suitable when working with boards that appear in the list of demo bundles,
except for ML506 (Virtex-5).

• Modifying the files to match a different FPGA. This is suitable when working with
other boards, and/or other FPGAs. This is also necessary when working with
Virtex-5. More information about this in paragraph 4.3.

• Setting up the Vivado (or ISE) projects from scratch. Possibly necessary when
integrating the demo bundle with existing application logic. Further details in
paragraph 4.2.

Getting started with the FPGA demo bundle for Xilinx 8

http://xillybus.com/

Xillybus Ltd. www.xillybus.com

In the remainder of this section, the first work procedure is detailed, which is the
simplest and most commonly chosen one. The other two work procedures are based
upon the first one, with differences that are detailed in the paragraphs given above.

IMPORTANT:

The evaluation bundle is configured for simplicity rather than performance. Signif-
icantly better results can be achieved for applications requiring a sustained and
continuous data flow, in particular for high-bandwidth cases. For these scenarios,
a custom IP core is easily built and downloaded with the web application.

3.2 File outline

The bundle consists of some of these directories (which directories are present de-
pends on the intended FPGA):

• core – The Xillybus IP core is stored here

• instantiation templates – Contains the instantiation templates for the core (in
Verilog and VHDL)

• verilog – Contains the project file for the demo bundle and the sources in Verilog
(in the ’src’ subdirectory)

• vhdl – Contains the project file for the demo bundle and the sources in VHDL (in
the ’src’ subdirectory)

• vivado-essentials – Definition files and build directories for logic, for use by Vi-
vado.

• blockplus – This directory is relevant only for Virtex-5. See paragraph 4.3.5.

Note that each demo bundle is intended for a specific board, as listed at the site’s
web page from which the demo bundle was downloaded. If another board is used,
or if certain configuration resistors have been added or removed from the board, the
constraints file must be edited accordingly.

For Vivado projects, this file is vivado-essentials/xillydemo.xdc, and for ISE projects
it’s the UCF file in the chosen ’src’ directory under verilog/ or vhdl/.

Also note that the vhdl directory contains Verilog files, but none of these should need
significant changes.

Getting started with the FPGA demo bundle for Xilinx 9

http://xillybus.com/

Xillybus Ltd. www.xillybus.com

The interface between Xillybus’ IP core and the application logic takes place in the
xillydemo.v file or xillydemo.vhd file (in the respective ’src’ subdirectories). This is the
file to edit in order to try Xillybus with your own data.

3.3 Generating the bitstream file with Vivado

ISE users: Please skip to paragraph 3.4.

Vivado generates many intermediate files in a relatively complex structure, which
makes it difficult to keep the project under control. In order to keep the file struc-
ture in the bundle compact, a script in Tcl is supplied for creating the Vivado project.
This script creates a new subdirectory, “vivado”, and populates this directory with files
as necessary.

The project relies on the files in the src/ subdirectory (no copies of these files are
made). The PCIe block, as well as the FIFOs that are used by the logic, are defined in
vivado-essentials/. Vivado also populates this directory with intermediate files during
the project’s implementation.

Start Vivado. With no project open, Pick Tools > Run Tcl Script... and choose
xillydemo-vivado.tcl in the verilog/ or vhdl/ subdirectory, depending on your pref-
erence. A sequence of events takes place during less than a minute. The success of
the project’s deployment can be verified by choosing the “Tcl Console” tab at Vivado’s
window’s bottom, and verify that it says:

INFO: Project created: xillydemo

If this is not the last line in the Tcl console, something went wrong, most likely because
the wrong revision of Vivado is used.

Warnings will appear during this stage, but no errors. However if the project has
already been generated (i.e. the script has been run already), attempting to run the
script again will result in the following error:

ERROR: [Common 17-53] User Exception: Project already exists on disk,

please use ’-force’ option to overwrite:

Note that the new “vivado” subdirectory is created in the directory that contains the
Tcl script.1

After the project has been created, start an implementation: Click “Generate Bit-
stream” (or “Generate Device Image”) on the Flow Navigator bar to the left.

Getting started with the FPGA demo bundle for Xilinx 10

http://xillybus.com/

Xillybus Ltd. www.xillybus.com

A popup window that asks if it’s OK to launch synthesis and implementation is likely
to appear – pick “Yes”.

Vivado runs a sequence of processes. This takes a few minutes normally. Several
warnings are issued, none of which are classified critical (but some critical warnings
may still remain in the logs from the execution of the Tcl script).

A popup window will appear, which will say that the implementation of the bitstream
was completed successfully. It will give choices of what to do next. Any option is fine,
including “Cancel”.

The bitstream file, xillydemo.bit, can be found at vivado/xillydemo.runs/impl 1/. For
Versal FPGAs, the file is xillydemo.pdi instead.

The implementation is never expected to fail. There is however a one error condition
worth mentioning:

An error saying “Timing constraints weren’t met” can happen when custom logic has
been integrated. This means that the tools failed to achieve the requirements for
timing. In this case, the design is syntactically correct, but needs corrections to make
certain paths fast enough with respect to given clock rates and/or I/O requirements.
The process of correcting the design for better timing is often referred to as timing
closure.

A timing constraint failure is commonly announced as a critical warning, so Vivado
doesn’t prevent the user from producing a bitstream file that doesn’t guarantee the
FPGA’s reliable behavior. To prevent the creation of such a bitstream, a timing fail-
ure is turned into an error by virtue of a small Tcl script, namely “showstopper.tcl”,
which is automatically executed at the end of a route run. To turn this safety measure
off, click “Project Settings” under “Project Manager” in the Flow Navigator. Choose
the “Implementation” button, and scroll down to the settings for “route design”. Then
remove showstopper.tcl from tcl.post.

Getting started with the FPGA demo bundle for Xilinx 11

http://xillybus.com/

Xillybus Ltd. www.xillybus.com

Vivado users may skip the following sections, and go directly to paragraph 3.6.

3.4 Setting up Xilinx’ PCIe IP core

This part relates only to the ISE toolchain, for FPGAs other than Spartan-6. If Vivado
is used, please refer to paragraph 3.3. Those working with Spartan-6 FPGAs may
jump directly to paragraph 3.5.

A somewhat peculiar organization of the Coregen IP core for PCIe doesn’t allow the
inclusion of the XCO file in the implementation project, but instead, the core generating
software creates Verilog files for inclusion. This is the case only when working with
Virtex-5, Virtex-6 and series-7.

Virtex-5 FPGAs require some special handling of the XCO files. See paragraph 4.3.5.

Please find the project file (.xise) in the blockplus directory or the pcie core directory
(as found in your bundle) and double-click it to open ISE. Under “Design Utilities”, click
“Regenerate all cores” and wait for the process to finish. Then just close ISE. There
is no need for any further action.

This procedure generates a set of Verilog files, which are wrappers for the Xilinx PCIe
core. These files are used by the project that creates the demo bundle’s bitstream.
The files are generated in Verilog, regarless of your choice of Verilog or VHDL as the
preferred language.

These is no need to manually include these Verilog files in the main project, but these
files have to be generated once before the implementation of the entire project is
attempted. There is no need to repeat this procedure, even not before a repeated
implementation of the main project.

3.5 Generating the bit file with the ISE suite

When working with an FPGA that belongs to the Virtex or series-7 families, please
make sure you’ve prepared the PCIe wrapper, as instructed in paragraph 3.4 above.

Depending on your preference, double-click the ’xillydemo.xise’ file in either the ’ver-
ilog’ subdirectory or the ’vhdl’ subdirectory. ISE will start running and open the project
with the correct settings. ISE shouldn’t complain that any file is missing. If it does,
and the FPGA family is one of series-7 or any Virtex family, it’s likely that your PCIe
wrapper wasn’t prepared as mentioned in paragraph 3.4.

Click “Generate Programming File” to start the implementation.

Getting started with the FPGA demo bundle for Xilinx 12

http://xillybus.com/

Xillybus Ltd. www.xillybus.com

During the first implementation, there is a need to regenerate two or three Xilinx Core-
gen IP cores. This process is time-consuming, but fortunately it’s done only once. A
popup window looking something like this will appear two or three times:

Click “Yes” on all of these.

The procedure will produce several warnings (an implementation of an FPGA project
always does) but should not present any errors. When the process is finished, the
bitfile can be found as xillydemo.bit.

Always verify that the timing constraints were achieved by looking for the following
sentence in the log (somewhere near the end):

All constraints were met.

This is crucial, in particular after making changes in the project. If the constraints
aren’t achieved, the tools will still generate a bitfile, but the FPGA may behave in an
unpredictable manner (possibly as a result of temperature changes within the allowed
temperature range).

A similar message can be found in ISE’s design summary.

Failing to achieve timing constraints could be a result of adding logic that isn’t fast
enough to withstand the rate of bus clk. But if a failure occurs for no apparent reason,
it could be that Xilinx’ tools made a poor initial guess when attempting to place the
logic components on the FPGA’s logic fabric, and the optimization algorithm running
later on couldn’t fix this.

The latter case can be fixed by changing the placer cost table figure (which is just a
seed to the randomness of the initial placement). In the Processes pane inside ISE

Getting started with the FPGA demo bundle for Xilinx 13

http://xillybus.com/

Xillybus Ltd. www.xillybus.com

Project Navigator , right-click “Map” and pick “Process Properties...”. Make sure that
the Property display level is “Advanced” and change the “Starting Placer Cost Table”
to just any other number that hasn’t been tried yet. The magnitude of this number has
no significance. Then restart with “Generate Programming File”.

IMPORTANT:

On some ISE versions, notably ISE 14.2, the build in the verilog/ directory
may fail with an error saying ERROR:HDLCompiler:687 - “C:/try/xillybus-eval-
kintex7-1.1/verilog/src/fifo 32x512 synth.v” Line 54: Illegal redeclaration of mod-
ule fifo 32x512. (or similar). This is due to a bug in Xilinx’ tools. To work around
this, delete fifo 8x2048 synth.v and fifo 32x512 synth.v in the src/ directory, and
restart “Generate Programming File”. Several warnings will indicate that the tools
fail to find these files, but the implementation should nevertheless run through
properly.

3.6 Loading the bitfile

In early development stages, it’s recommended to load the FPGA via JTAG. On most
boards, a simple USB cable between the computer that runs Vivado and a USB con-
nector on the board’s panel is enough. Those who work with ISE, use iMPACT for
loading the bitfile.

Please refer to your board’s instructions on how to load the FPGA via JTAG.

For XillyUSB projects, the FPGA can be loaded and reloaded at any time, even while
the USB interface is connected to a working computer.

With PCIe projects, the FPGA must be loaded with the bitfile before the computer is
powered up: The computer expects the PCIe peripheral to be in a proper state when
it powers up, and may not tolerate any surprises afterwards.

Therefore, do not reload the FPGA as long as the host is running. Even though
the PCIe specification requires support for hotplugging, motherboards don’t normally
expect a PCIe card to disappear and then reappear. Accordingly, some motherboards
may not respond correctly. Nevertheless, reloading of the FPGA, while the operating
system is running, works on some motherboards.

Xillybus’ driver is designed to respond sanely to hotplugging, however there is nothing
to assure the computer’s general stability. This is dicussed on this page:

http://xillybus.com/doc/hot-reconfiguration

Getting started with the FPGA demo bundle for Xilinx 14

http://xillybus.com/
http://forums.xilinx.com/t5/Design-Entry/ISE14-2-when-i-instantiate-the-fifo-ipcore-with-xco-file-there/td-p/259770
http://xillybus.com/doc/hot-reconfiguration

Xillybus Ltd. www.xillybus.com

If the FPGA powers up and is loaded from a flash memory along with powering up
the computer, it’s essential to ensure that the FPGA is loaded quickly enough, so the
PCIe device is present when the BIOS scans the bus.

Getting started with the FPGA demo bundle for Xilinx 15

http://xillybus.com/

Xillybus Ltd. www.xillybus.com

4
Modifications

4.1 Integration with custom logic

The Xillybus demo bundle is constructed for easy integration with application logic.
The place for connecting data is the xillydemo.v or xillydemo.vhd file (depending on
the preferred language). All other HDL files in the bundle can be ignored for the
purpose of using the Xillybus IP core for transporting data between the host (Linux or
Windows) and the FPGA.

Additional HDL files with custom logic designs may be added to the project that was
prepared as described in paragraph 3.5 or 3.3, and then rebuilt by clicking “Generate
Programming File” or “Generate Bitstream”. There is no need to repeat the other
steps of the initial deployment, so the development cycle for logic is fairly quick and
simple.

When attaching the Xillybus IP core to custom application logic, it is warmly recom-
mended to interact with the Xillybus IP core only through FIFOs, and not attempt to
mimic their behavior with logic, at least not in the first stage.

An exception for this is when connecting memories or register arrays to Xillybus, in
which case the example that is shown in the xillydemo module should be followed.

In the xillydemo module, FIFOs are used to perform a data loopback. In other words,
the data that arrives from the host is sent back to it. Both of the FIFO’s sides are
connected to the Xillybus IP core, so the core is both the source of the data and the
consumer of the data.

In a real-life usage scenario, only one of the FIFO’s sides is connected to the Xillybus
IP core. The FIFO’s other side is connected to application logic, which supplies or
consumes data.

Getting started with the FPGA demo bundle for Xilinx 16

http://xillybus.com/

Xillybus Ltd. www.xillybus.com

The FIFOs that are used in the xillydemo module work with only one common clock for
both sides, as both sides are driven by Xillybus’ main clock. In a real-life application,
it may be desirable to replace them with FIFOs that have separate clocks for reading
and writing. This allows to driving the data sources and data consumers with a clock
other than bus clk. By doing this, the FIFOs serve not just as mediators, but also for
proper clock domain crossing.

Note that the Xillybus IP core expects a plain FIFO interface, (as opposed to First
Word Fall Through, FWFT) for streams from the FPGA to the host.

The following documents are related to integrating custom logic:

• The API for logic design: Xillybus FPGA designer’s guide

• Getting started with Xillybus on a Linux host

• Getting started with Xillybus on a Windows host

• Xillybus host application programming guide for Linux

• Xillybus host application programming guide for Windows

• The guide to defining a custom Xillybus IP core

4.2 Inclusion in a custom project

If desired, it’s possible to include the Xillybus IP core in an existing Vivado / ISE project,
or create a new project from scratch.

If the project doesn’t exist already, start a new project, and set it up as based upon
your preferred HDL language and intended FPGA.

To include the Xillybus IP core in a Vivado project, it’s recommended to edit xillydemo-
vivado.tcl to reflect the custom project’s source files and settings, and create a fresh
project by running this script.

To include the Xillybus IP core in an ISE project:

• When working with FPGAs belonging to the Virtex-5/6 or series-7 families, the
PCIe wrapper files need to be generated separately, as detailed in paragraph
3.4 (and also paragraph 4.3.5 for Virtex-5 FPGAs). The generated Verilog files
should be added in the custom project (but not the XCO file).

• Add all files in one of the two src/ subdirectories (depending on your language
preference) into the project.

Getting started with the FPGA demo bundle for Xilinx 17

http://xillybus.com/
http://xillybus.com/downloads/doc/xillybus_fpga_api.pdf
http://xillybus.com/downloads/doc/xillybus_getting_started_linux.pdf
http://xillybus.com/downloads/doc/xillybus_getting_started_windows.pdf
http://xillybus.com/downloads/doc/xillybus_host_programming_guide_linux.pdf
http://xillybus.com/downloads/doc/xillybus_host_programming_guide_windows.pdf
http://xillybus.com/downloads/doc/xillybus_custom_ip.pdf

Xillybus Ltd. www.xillybus.com

• Add a directory to the Macro search path: In the process menu, under “Imple-
mentation”, right-click “Translate” and choose “Process Properties...”. Add the
’core’ subdirectory to the Macro Search Path property (browsing with the button
to the far right). Failing to set this property will make the Translate stage to fail
during the implementation, because it won’t find the xillybus core.ngc file.

• If the xillydemo module isn’t the top level module of the projects, connect its
ports to the top level.

• To attach the Xillybus IP core to custom application logic, edit the xillydemo
module, replacing the existing application logic with the desired one.

4.3 Using other boards

4.3.1 General

When working with a board which doesn’t appear in the list of demo bundles, some
slight modifications in the bundle are necessary.

The core generates a few GPIO LED outputs. It’s recommended to connect these to
LEDs on the board, if there are any such vacant.

4.3.2 Using Xillybus for PCIe

Most purchased boards have their own example of an FPGA design, which shows
how the PCIe interface is used on that board. It’s often easiest to locate the relevant
pin assignments in the intended board’s XDC / UCF file, and modify the pins’ names
to those that are used in Xillybus’ XDC / UCF file. Then it’s possible to replace the
relevant rows in the XDC / UCF file that is used in Xillybus’ project.

The details about how to place the pins are given below.

Note that the most common mistake is with the reference clock of the PCIe bus. Con-
necting just any clock with the same frequency will not work: The tiny frequency differ-
ence between the motherboard’s clock and any other clock will make the transceiver
lose lock sporadically, resulting in unreliable communication, and possibly a failure to
detect the FPGA as a PCIe device.

Since the Xillybus core is based upon Xilinx’ PCIe core, Xilinx’ user guide is a valid
source for considerations that are related to PCIe’s physical layer.

Getting started with the FPGA demo bundle for Xilinx 18

http://xillybus.com/

Xillybus Ltd. www.xillybus.com

4.3.3 Working with Spartan-6 PCIe boards

For Spartan-6, the Xillybus core interfaces with the host through a PCIe bus port,
which consists of 7 physical wires as follows:

• A pair of differential wires for the reference clock, with the names PCIE 250M P
and PCIE 250M N: A clock with a frequency of 125 MHz (despite the net’s
name), which is derived from the PCIe bus clock, is expected on these wires. If
a different clock is applied, the Xilinx PCIe Coregen core (defined by pcie.xco in
the bundle) must be reconfigured to expect the real clock frequency. Addition-
ally, a timing constraint must be updated, so that the TS PCIE CLK specification
reflects the change.

• The host’s master bus reset on PCIE PERST B LS

• Serial data input pair, PCIE RX0 P and PCIE RX0 N

• Serial data output pair, PCIE TX0 P and PCIE TX0 N

These pins’ assignments are set according to the board’s wiring.

4.3.4 Working with Virtex-6 PCIe boards

For Virtex-6 the wiring is similar:

• A pair of differential wires for the reference clock, with the names PCIE REFCLK P
and PCIE REFCLK N: A clock with a frequency of 250 MHz, which is derived
from the PCIe bus clock, is expected on these wires. If a different clock is ap-
plied, the Xilinx PCIe Coregen core (defined by pcie v6 4x.xco in the bundle)
must be reconfigured to expect the real clock frequency. Such a change may
also involve changes in the constraints. Please refer to the example UCF file,
generated by Coregen.

• The host’s master bus reset on PCIE PERST B LS

• Serial data input vector pair, PCIE RX P and PCIE RX N (4 wires each)

• Serial data output vector pair, PCIE TX P and PCIE TX N (4 wires each)

The pin assignment is made implicitly by placing the transceiver logic. The constraints
defining the GTX placements in the UCF file force a certain pinout. Likewise, the
placement of the reference clock’s pins is implicitly set by constraining the position

Getting started with the FPGA demo bundle for Xilinx 19

http://xillybus.com/

Xillybus Ltd. www.xillybus.com

of the clock buffer (pcieclk ibuf). The UCF file in Xillybus’ bundle contains guiding
comments.

The UCF file must be edited so that the pin placements of these match those of the
intended board.

4.3.5 Working with Virtex-5 PCIe boards

There are two groups of devices within the Virtex-5 family, each requiring a slightly
different PCIe interface. To handle this simply, there are two different XCO files in the
’blockplus’ subdirectory, only one of which should be used.

Accordingly, it’s necessary to rename a file in that subdirectory as follows before build-
ing the PCIe core:

• For Virtex-5 LX or Virtex-5 SX: Rename pcie v5 gtp.xco to pcie v5.xco

• For Virtex-5 FX or Virtex-5 TX: Rename pcie v5 gtx.xco to pcie v5.xco

IMPORTANT:

The version of PCIe Block Plus generator should be 1.14, and definitely not 1.15.
ISE 13.1 has the correct version for this purpose, but the one that arrives with ISE
13.2 will produce faulty code.

If a version other than ISE 13.1 is desired for the overall implementation, it’s possible
to generate the Verilog files with the correct version of PCIe Block Plus (included in
ISE 13.1). The implementation of the entire project can then be done in the preferred
version of ISE.

The UCF file has guiding comments on how the pins should be set up. The placement
of the PCIe pins is implicit, and is forced by the constraint on the position of the
GTP/GTX component.

A clock with a frequency of 100 MHz is expected on the PCIE REFCLK wire pair. If a
different clock is applied, the Xilinx PCIe Coregen core (defined by pcie v5.xco) must
be reconfigured to expect the real clock frequency. Additionally, a timing constraint
must be updated, so that the TS MGTCLK specification reflects the change.

4.3.6 Working with Kintex-7, Virtex-7 and Artix-7 boards (PCIe)

All FPGAs in the series-7 family have the same PCIe interface.

Getting started with the FPGA demo bundle for Xilinx 20

http://xillybus.com/

Xillybus Ltd. www.xillybus.com

• A pair of differential wires for the reference clock, with the names PCIE REFCLK P
and PCIE REFCLK N: A clock with a frequency of 100 MHz, which is derived
from the PCIe bus clock (or connected directly), is expected on these wires.

If a different clock is applied, the PCIe block (defined by pcie k7 vivado.xci or
similar in the demo bundle) must be reconfigured to expect the real clock fre-
quency. This file appears in the project’s list of sources. Such a change may
also involve changes in the timing constraints. Please refer to the example XCF
file, generated by Xilinx’ tools.

If ISE is used, Xilinx’ PCIe core is defined by e.g. pcie k7 8x.xco. The UCF file,
rather than XDC, may need adjustment.

• The host’s master bus reset on PCIE PERST B LS

• Serial data input vector pair, PCIE RX P and PCIE RX N (8 or 4 wires each)

• Serial data output vector pair, PCIE TX P and PCIE TX N (8 or 4 wires each)

The pin assignment is made implicitly by placing the transceiver logic. The constraints
defining the GTX placements in the UCF/XDC file force a certain pinout. Likewise, the
placement of the reference clock’s pins is implicitly set by constraining the position of
the clock buffer (pcieclk ibuf). The UCF / XDC file in Xillybus’ demo bundle contains
guiding comments.

The UCF/ XDC file must be edited so that the pin placements of these match those of
the intended board.

4.3.7 Working with Ultrascale and Ultrascale+ boards (PCIe)

All of these FPGAs have the same PCIe interface.

• A pair of differential wires for the reference clock, with the names PCIE REFCLK P
and PCIE REFCLK N: A clock with a frequency of 100 MHz, which is connected
directly to the PCIe bus’ clock.

If a different clock is applied, the PCIe block (defined by pcie ku vivado.xci or
similar in the demo bundle) must be reconfigured to expect the real clock fre-
quency, and the timing constraint for this clock must be updated in xillydemo.xdc.
These files appears in the project’s list of sources.

• The host’s master bus reset on PCIE PERST B LS

• Serial data input vector pair, PCIE RX P and PCIE RX N (8 or 4 wires each)

Getting started with the FPGA demo bundle for Xilinx 21

http://xillybus.com/

Xillybus Ltd. www.xillybus.com

• Serial data output vector pair, PCIE TX P and PCIE TX N (8 or 4 wires each)

The pin assignment is made implicitly by placing the transceiver logic. The constraints
defining the GTX placements in the XDC file force a certain pinout. Likewise, the
placement of the reference clock’s pins is implicitly set by constraining the position of
the clock buffer (pcieclk ibuf). The XDC file in Xillybus’ demo bundle contains guiding
comments.

The XDC file must be edited so that the pin placements of these match those of the
intended board.

4.3.8 Working with Versal ACAP boards (PCIe)

These FPGAs have the following PCIe interface:

• A pair of differential wires for the reference clock, with the names PCIE REFCLK P
and PCIE REFCLK N: A clock with a frequency of 100 MHz, which is connected
directly to the PCIe bus’ clock.

If a different clock is applied, the PCIe controller in the CPM block (which is in-
side the CIPS IP in the pcie versal block design) must be reconfigured to expect
the real clock frequency.

• Serial data input vector pair, PCIE RX P and PCIE RX N (8 wires each)

• Serial data output vector pair, PCIE TX P and PCIE TX N (8 wires each)

The host’s master bus reset is connected directly to PMC MIO 38. If another MIO
pin is used for this signal, the CIPS IP must be configured accordingly (see Xillybus’
tutorial page for more information).

The XDC doesn’t contain any constraints that are related to the PCIe block. Both
the timing constraints and the pin placement constraints are supplied by the CIPS IP
implicitly. Note that the pin placements can’t be moved, since the CPM is used for the
PCIe interface.

The procedure for changing the PCIe block’s parameters is different from other FP-
GAs: The PCIe part is implemented as a block design. In this block design, there is
a block that is named pcie block support. This block contains the transceivers and
clock resources that are used by the PCIe block. It is therefore required to update
pcie block support after changing the number of lanes or the link speed. It’s not
enough to only update pcie block.

Getting started with the FPGA demo bundle for Xilinx 22

http://xillybus.com/
http://xillybus.com/tutorials/versal-apac-pcie-cips-cpm

Xillybus Ltd. www.xillybus.com

The method for updating pcie block support is to delete this block and let Vivado re-
generate it. This way, the block is created with the updated parameters of the PCIe
block.

It is recommended to create a visual copy of the block design before starting this
procedure. This will be helpful, because it is required to reconstruct the same block
design with the updated pcie block support block.

The steps for this procedure are as follows:

• Delete the pcie block support block and all its external ports. This means to
delete ports that are not connected to anything (e.g. “pcie mgt”), and also delete
ports that are connected to a block (e.g. “m axis cq 0”).

• Delete the connection of the reset signal between versal cips 0 and pcie block.

• In response to the previous step, Vivado should suggest “Run Block Automa-
tion”. Click on that that suggestion. Vivado will open pop-up windows in re-
sponse. Verify that the PCIe parameters are correct, and click “OK”. Note that
Vivado will also suggest “Run Connection Automation”, however this option is
not sufficient.

• Vivado will add a new pcie block support block and make several connections.

• Remove the external port that is related to “sys reset”. Instead, connect ver-
sal cips 0’s pl pcie0 resetn to the sys reset inputs of two blocks: pcie block and
pcie block support. After doing this, “sys reset” is connected like it was before.

• Select all pins of the PCIe block that aren’t connected to anything (it’s possible
to use CTRL-click for this purpose). Make these ports external, by using right-
click > Make External. Vivado will create ports for all pins. The name of each
external port will be like the net’s name, with a “ 0” suffix added.

4.3.9 Working with XillyUSB

XillyUSB can be used on other boards that have an SFP+ interface. In this case it’s
just a matter of setting the design’s constraints to use the MGT that is wired to the
SFP+ connector.

The board should also supply a 125 MHz reference clock with low jitter for the MGT.
Despite the requirement in the USB specification, Spread Spectrum Clocking (SSC)
should not be enabled (if such option exists): The MGT doesn’t lock properly on the
received signal if an SSC reference clock is used.

Getting started with the FPGA demo bundle for Xilinx 23

http://xillybus.com/

Xillybus Ltd. www.xillybus.com

For custom boards, it’s recommended to refer to the sfp2usb module’s schematics, as
the pins of the SFP+ connector are connected directly to the FPGA’s MGT. It is op-
tional to swap the SSRX wires, as done on the sfp2usb module. This is recommended
only if it simplifies the PCB design.

Swapping the SSTX wires is also possible, if desired. This requires editing the * frontend.v
file so that the polarity of the transmitted bits is reversed, and hence compensates for
the wire pair swap. Note that there’s a good chance that the USB connection will
operate properly even without this edit, since the USB specification requires the link
partners to work properly even with a polarity swap. It’s however recommended to not
rely on this.

4.4 PRSNT pins for indicating the number of PCIe lanes

According to the PCIe spec, there is one or more pins on the PCIe connector, which
indicate the presence of the peripheral in the PCIe slot, as well as the number of
lanes. These are the PRSNT pins. Most development boards have DIP switches for
adjusting how many lanes the host is informed about, by virtue of these pins.

The typical default setting of these pins is the maximal number of lanes that is possible
with the board. This setting usually works, even if less lanes are actually used. This is
because an initial negociation between the host and the peripheral (which is required
by the PCIe spec) ensures the correct detection of the actual number of lanes.

Please refer to your board’s reference manual about how to set these DIP switches.
It’s important not to set these DIP switches to less lanes than are actually used, since
some hosts may ignore lanes as a result of a faulty setting.

4.5 Changing the number of PCIe lanes and/or link speed

4.5.1 Introduction

IMPORTANT:

Changing the link’s parameters may require adjustments in the timing constraints.
Failing to pay attention to this issue can lead to a PCIe link that works, but in an
unreliable manner.
Always be sure to have properly adjusted the timing constraints, if necessary,
after making changes. This topic is detailed below.

Xillybus’ FPGA demo bundles are typically set to the maximal number of lanes avail-

Getting started with the FPGA demo bundle for Xilinx 24

http://xillybus.com/

Xillybus Ltd. www.xillybus.com

able on the intended board, and a link speed of 2.5 GT/s (Gen1).

The rationale is that if an FPGA board fits into the PCIe connector of a motherboard,
one can expect that all lanes will be used in the connection with the host. On the other
hand, in almost all cases, the bandwidth that is achieved by these lanes is higher than
the Xillybus IP core may utilize, even with 2.5 GT/s, and it’s hence pointless to set a
higher link speed.

As the PCIe specification requires a fallback capability to lower speeds from all bus
components that are involved, picking 2.5 GT/s ensures a uniform behavior on all
motherboards.

It’s however often desired to change the number of lanes and their link speed, in
particular when using the Xillybus IP core on a custom board. Less lanes with higher
link speed is a common requirement.

The Xillybus IP core relies on Xilinx’ PCIe block for the low-level interface with the PCIe
bus. Accordingly, the IP core works properly as long as Xilinx’ PCIe block operates
properly, regardless of the number of lanes or their link speed.

If the PCIe block is configured with a low number of lanes, combined with a link speed,
such that its bandwidth capability is lower than Xillybus IP core’s, it will still work prop-
erly. In this case, the aggregate bandwidth offered by Xillybus’ streams approximately
equals the bandwidth limit imposed by the settings of the PCIe block. It’s a question
of what becomes the bottleneck.

4.5.2 The work procedure

For Versal ACAP FPGAs, please refer to section 4.3.8. The description below is
intended for all other FPGAs.

In principle, changing the number of lanes and/or the link speed consists of making
changes in the configuration of the PCIe block as desired. However there are a few
issues to pay attention to:

• The modification may influence other parameters of the PCIe block, that may
cause it to fail operating correctly. Among others, there’s a bug in Xilinx’ GUI
tool to watch out for, as detailed below.

• The modification may change the frequencies of the clocks driving the PCIe
block (the PIPE clocks), and hence requires changes in timing constraints.

• The said change in clock frequencies may also require changes in Verilog code

Getting started with the FPGA demo bundle for Xilinx 25

http://xillybus.com/

Xillybus Ltd. www.xillybus.com

that supports the PCIe block (the instantiation of the pipe clock module, where
applicable), or else the PCIe block will not function.

The stages are hence as follows:

1. Make a copy of the XCO or XCI file on an active project (i.e. after Vivado or ISE
has upgraded the IP as necessary). This will allow comparing the changes with
a diff tool afterwards, and spot unwanted changes, if such occur.

2. Open the IP of the PCIe block in Vivado (or ISE) for configuration (with Ver-
sal FPGAs, open the CPM unit in the CIPS IP, which is the only block in the
pcie versal block design).

3. Change the number of lanes and/or Maximum Link Speed as desired, while
paying attention not to change the (AXI) interface width. If it’s possible to avoid
changing the (AXI) Interface Frequency by choosing a combination of lanes and
link speed that is adequate for the task, that is preferable.

4. After making the desired changes, verify that the Vendor ID and Device ID
haven’t changed (neither the Subsystem counterparts). Some revisions of Vi-
vado may reset some parameters to their defaults as a result of unrelated modi-
fications (this is a bug).

5. Confirm the changes (typically click “OK” at the bottom of the dialog box). There
is no need to generate output products, if this is suggested following the confir-
mation.

6. Compare the updated and previous XCO or XCI files with a textual diff tool, and
verify that only relevant parameters have changed. More on this below.

7. Adjust the signal vector width of PCIE * in xillybus.v and xillydemo.v/.vhd, so
they reflect the new number of lanes.

8. Adjust the PIPE clock module’s instantiation if necessary, as described in para-
graph 4.5.3 below.

9. Adjust timing constraints if necessary, as described in paragraph 4.5.4 below.

10. Update the PIPE clock module, as explained in paragraph 4.5.5.

The three last steps are not required when working with Ultrascale and later.

When comparing new and old XCI files, PARAM_VALUE.Device_ID should get spe-
cial attention, as it’s often changed accidentally.

Getting started with the FPGA demo bundle for Xilinx 26

http://xillybus.com/

Xillybus Ltd. www.xillybus.com

The differences in the parameters of the XCI files should match those desired. This
is a short list of possible parameters for which changes are acceptable in accordance
with the changes made in Vivado. The names of the parameters should be taken
with a grain of salt, as different revisions of Vivado (and hence different revisions of
the PCIe block) may represent the attributes of the PCIe block with different XML
parameters.

• Related to the number of lanes:

– PARAM_VALUE.Maximum_Link_Width

– MODELPARAM_VALUE.max_lnk_wdt

• Related to the link speed:

– PARAM_VALUE.Link_Speed

– PARAM_VALUE.Trgt_Link_Speed

– MODELPARAM_VALUE.c_gen1

– MODELPARAM_VALUE.max_lnk_spd

• Related to the the interface frequency. A change in these parameters is a strong
indication that the stages in paragraphs 4.5.3 and 4.5.4 are necessary.

– PARAM_VALUE.User_Clk_Freq

– MODELPARAM_VALUE.pci_exp_int_freq

4.5.3 Has the PIPE frequency changed?

When working with Ultrascale FPGAs and later, the considerations and actions below
are unnecessary, as their PCIe block supplies the timing constraints as an integral
part of the IP itself. Same goes for the PIPE module.

As for other FPGA families, it’s important to verify that the PIPE clock settings are
correct as follows:

Generate an example project for the PCIe block after the changes, and run a synthe-
sis of that project. In Vivado, this is typically done by right-clicking the PCIe block in
the project’s source hierarchy and select “Open IP Example Design...”. After selecting
a location for the design, and it has been generated, launch the synthesis by clicking
“Run Synthesis” at the left column.

Next, obtain the PIPE clock module’s instantiation parameters in the synthesis report
(in Vivado, it’s found as something like pcie example/pcie example.runs/synth 1/runme.log).
In this report, search for a segment like:

Getting started with the FPGA demo bundle for Xilinx 27

http://xillybus.com/

Xillybus Ltd. www.xillybus.com

INFO: [Synth 8-638] synthesizing module ’example_pipe_clock’ [...]

Parameter PCIE_ASYNC_EN bound to: FALSE - type: string

Parameter PCIE_TXBUF_EN bound to: FALSE - type: string

Parameter PCIE_CLK_SHARING_EN bound to: FALSE - type: string

Parameter PCIE_LANE bound to: 4 - type: integer

Parameter PCIE_LINK_SPEED bound to: 3 - type: integer

Parameter PCIE_REFCLK_FREQ bound to: 0 - type: integer

Parameter PCIE_USERCLK1_FREQ bound to: 4 - type: integer

Parameter PCIE_USERCLK2_FREQ bound to: 4 - type: integer

Parameter PCIE_OOBCLK_MODE bound to: 1 - type: integer

Parameter PCIE_DEBUG_MODE bound to: 0 - type: integer

The parameters in this report must match those in the instantiation of pipe clock, as
they appear in xillybus.v, which is of the form:

pcie_[...]_pipe_clock #

(

.PCIE_ASYNC_EN ("FALSE"),

.PCIE_TXBUF_EN ("FALSE"),

.PCIE_LANE (6’h08),

.PCIE_LINK_SPEED (3),

.PCIE_REFCLK_FREQ (0),

.PCIE_USERCLK1_FREQ (4),

.PCIE_USERCLK2_FREQ (4),

.PCIE_DEBUG_MODE (0)

)

pipe_clock

(

[...]

);

The three parameters to compare are PCIE_LINK_SPEED, PCIE_USERCLK1_FREQ
and PCIE_USERCLK2_FREQ, which must match. If they do (as shown in the example),
all is set correctly, including the timing constraints. If not, two actions must be taken:

• The instantiation parameters in xillybus.v must be updated to match those in the
example project’s synthesis report.

• The timing constraints must be adapted to the example project’s. This is more
difficult, because failing to do this correctly doesn’t necessary cause a problem
immediately, but may impact the design’s reliability.

If the PCIE_LANE parameter in xillybus.v is larger than the example project’s, there is

Getting started with the FPGA demo bundle for Xilinx 28

http://xillybus.com/

Xillybus Ltd. www.xillybus.com

no problem leaving it that way, and it’s often easier to do so.

4.5.4 Adapting the timing constraints

It’s mandatory to adjust the timing constraints to reflect changes in the clocks of the
PCIe block, if such have occurred.

As the constraints depend on the chosen FPGA as well as Vivado’s revision, it may
be somewhat difficult to get this done correctly. Avoiding this adjustment is the main
motivation for attempting to keep the PIPE clock’s frequency unchanged by selecting
a combination of link speed and number of lanes (when possible). However even if
the PIPE clock’s frequency remains unchanged, updating the constraints may still be
necessary.

Once again, when an FPGA of the Ultrascale family (and later) is used, there is no
need to deal with timing constraints, because the IPs of their PCIe block handle this
internally.

In order to adjust the timing constraints, first find the constraints of the example project.
With Vivado, it’s typically as a file of the form
example.srcs/constrs_1/imports/example_design/xilinx_*.xdc.

It’s highly recommended to generate one example project with the PCIe block’s setting
before the changes in number of lanes and/or link speed, and one example project
after these changes. A simple diff between the two example projects’ constraint files
gives the definite answer to whether adaption of the constraints is required, and if so,
in what way.

Compare the constraint file’s “Timing constraints” section with those in xillydemo.xdc.
The example project selects logic elements by their absolute position in the logic hi-
erarchy, so some editing is necessary. For example, suppose a timing constraint like
this in the example project:

set_false_path -to [get_pins {pcie_vivado_support_i/pipe_clock_i/

pclk_i1_bufgctrl.pclk_i1/S0}]

In xillydemo.xdc it should be written as:

set_false_path -to [get_pins -match_style ucf */pipe_clock/

pclk_i1_bufgctrl.pclk_i1/S0]

The main differences are with the relative paths used in Xillybus’ constraints. There

Getting started with the FPGA demo bundle for Xilinx 29

http://xillybus.com/

Xillybus Ltd. www.xillybus.com

might also be other slight differences, as some constraints are necessary with earlier
revisions of Xilinx’ tools, and become superfluous with later ones.

After making the changes in the timing constraints, it’s important to verify that they
took effect on logic by reviewing the timing report after the design’s implementation.

Finally, it’s worth explaining the following two constraints, which are present in xilly-
demo.xdc of some demo bundles:

set_case_analysis 1 [get_pins -match_style ucf */pipe_clock/

pclk_i1_bufgctrl.pclk_i1/S0]

set_case_analysis 0 [get_pins -match_style ucf */pipe_clock/

pclk_i1_bufgctrl.pclk_i1/S1]

These constraints are required for Gen1 PCIe blocks, when using quite old revisions
of Vivado, as explained in Xilinx AR #62296. Hence they may be omitted with recent
Xilinx tools.

4.5.5 Updating the PIPE clock module

As mentioned above, this step isn’t required for Ultrascale FPGAs and later.

In some cases, in particular when increasing the link speed from or to 2.5 GT/s
(Gen1), it’s required to update the pcie * vivado pipe clock.v file, which resides in
the vivado-essentials/ directory.

This file is generated automatically as part of the initial project setup by virtue of
executing xillydemo-vivado.tcl. It may change slightly depending on the configuration
of the PCIe block, in particular if it’s limited to 2.5 GT/s or not.

The recommended way is to regenerate the Vivado project with the xillydemo-vivado.tcl
script. Namely, start from a fresh demo bundle, and copy the files that were changed
during the previous stages into it:

• The XCI file of the PCIe block

• xillydemo.xdc

• The Verilog / VHDL files that were edited for adapting to the new number of
lanes and link speed.

With these files copied into the new demo bundle, generating the project with the
xillydemo-vivado.tcl script ensures that the PIPE clock module is in accordance with

Getting started with the FPGA demo bundle for Xilinx 30

http://xillybus.com/
https://www.xilinx.com/support/answers/62296.html

Xillybus Ltd. www.xillybus.com

the settings of the PCIe block, and also that the project doesn’t depend on any leftover
files from before the change.

Alternatively, update the pcie * vivado pipe clock.v file from the example project that
was created in paragraph 4.5.3. The file to be used has exactly the same name as
the one in vivado-essentials/, and is typically found deep into the example project’s
file hierarchy. Copy this file into vivado-essentials/ (overwriting the existing one).

4.6 Changing the FPGA part number

When migrating from one FPGA family to another, it’s necessary to start from a differ-
ent demo bundle. There are differences (which are sometimes subtle) that relate to
the PCIe block, (as well as the MGT block with XillyUSB). These differences require a
different Xillybus IP core as well as different wrapper modules.

Attempting to just change the project’s part in Vivado / ISE may result in a project with
errors during its implementation. Even if the implementation is successful, the logic
may not work, or work unreliably.

However when remaining within the same FPGA family, changing the part number is
often sufficient (along with the considerations mentioned above regarding pin place-
ment and constraints).

It’s important to note that for some FPGA families (Ultrascale in particular), the position
(site) of the PCIe block in the logic fabric is an attribute of the PCIe block itself, and it
may therefore require modification. Moreover, each specific FPGA, and each specific
package, has its own set of valid sites. Hence the change of FPGA may reset the
PCIe IP’s attributes, if the site that is selected for the PCIe block doesn’t exist on the
new FPGA.

Vivado’s reaction to an invalid site in the PCIe block’s position (site) is quite destruc-
tive. If this is the case, the “upgrade” of the PCIe block (the operation which is always
required to unlock the IP after changing the FPGA) results in resetting several at-
tributes of the PCIe block, to arbitrary values. While doing so, a Critical Warning like
the following is generated:

CRITICAL WARNING: [IP_Flow 19-3419] Update of ’pcie_ku’ to current project

options has resulted in an incomplete parameterization. Please review the

message log, and recustomize this instance before continuing with your design.

Attempting an implementation of the project without paying attention to this issue is
completely pointless, and leads not just to a large number of misleading warnings,

Getting started with the FPGA demo bundle for Xilinx 31

http://xillybus.com/

Xillybus Ltd. www.xillybus.com

Critical Warnings and possibly errors, but the result, if any, will be far from being
functional.

The solution is to assign a PCIe block site that is valid on the new FPGA, before
changing the part number attribute for the project. This might require editing the XCI
file manually if there is no common site between the FPGA part before and after the
change (because in this case, it will not be possible to make this change in the GUI,
which limits the setting to the sites allowed on the current FPGA part).

Getting started with the FPGA demo bundle for Xilinx 32

http://xillybus.com/

Xillybus Ltd. www.xillybus.com

5
Troubleshooting

5.1 Errors during implementation

Slight differences between releases of Xilinx’ tools sometimes result in failures to run
the implementation for creating a bitfile.

If the problem isn’t solved fairly quickly, please seek assistance through the email
address given at Xillybus’ web site. Please attach the output log of the process that
failed, in particular around the first error reported by the tool. Also, if custom changes
were made in the design (i.e. diversion from the demo bundle) please detail these
changes. Also please state which version of Vivado (or ISE) was used.

5.2 PCIe Hardware problems

Normally, the PCIe card is detected properly by the host’s BIOS and/or operating
system, and the host’s driver launches successfully.

On most PC computers, the BIOS briefly displays a list of detected peripherals early
in the boot process. When the Xillybus interface is detected successfully, a peripheral
with vendor ID 10EE and device ID EBEB appears on the list.

As for the operating system’s detection of the card, please refer to one of these two
documents, whichever applies:

• Getting started with Xillybus on a Linux host

• Getting started with Xillybus on a Windows host

The failure to detect the card (or a failure in the computer’s boot process) is not related
to the Xillybus IP core, which relies on Xilinx’ PCIe IP core for interfacing with the bus.

Getting started with the FPGA demo bundle for Xilinx 33

http://xillybus.com/
http://xillybus.com/downloads/doc/xillybus_getting_started_linux.pdf
http://xillybus.com/downloads/doc/xillybus_getting_started_windows.pdf

Xillybus Ltd. www.xillybus.com

At first, it’s recommended to verify the following:

• The bitstream was already loaded into the FPGA when the computer was pow-
ered on (or soon enough after it was powered on, in terms of the PCI-SIG spec-
ification).

• The pinouts of the PCIe wires, including the reference clock are correct (this can
be verified in the placement report).

• The board supplies the correct reference clock to the FPGA.

If the problem isn’t spotted immediately, it’s recommended to attempt the sample
project for PCIe that came with the board. This may reveal wrong jumper settings
and possibly defective hardware.

If the card is detected with this sample, but not with Xillybus, it may be helpful to
compare the pinouts of the two designs. If they are equal, the next step is comparing
the attributes of the Xilinx’ PCIe cores by invoking the IP GUI for each (double-clicking
the XCI / XCO element in the Project Manager with each of the projects open).

The following configuration elements may need adjustment:

• The frequency of the reference clock (may appear as “Interface Frequency” in
the GUI).

• The base class and sub class (not likely, but some relatively old PC computers
have failed the boot process if the class was considered unknown).

• Any other attribute that is configured differently, except for the base address
register settings, vendor ID, device ID and interrupt settings, which should not
be altered.

If the problem remains, please seek assistance through the email address given at
Xillybus’ web site.

Getting started with the FPGA demo bundle for Xilinx 34

http://xillybus.com/

	Introduction
	Prerequisites
	Hardware
	FPGA project
	Development software
	Experience with FPGA design

	The implementation of the demo bundle
	Overview
	File outline
	Generating the bitstream file with Vivado
	Setting up Xilinx' PCIe IP core
	Generating the bit file with the ISE suite
	Loading the bitfile

	Modifications
	Integration with custom logic
	Inclusion in a custom project
	Using other boards
	General
	Using Xillybus for PCIe
	Working with Spartan-6 PCIe boards
	Working with Virtex-6 PCIe boards
	Working with Virtex-5 PCIe boards
	Working with Kintex-7, Virtex-7 and Artix-7 boards (PCIe)
	Working with Ultrascale and Ultrascale+ boards (PCIe)
	Working with Versal ACAP boards (PCIe)
	Working with XillyUSB

	PRSNT pins for indicating the number of PCIe lanes
	Changing the number of PCIe lanes and/or link speed
	Introduction
	The work procedure
	Has the PIPE frequency changed?
	Adapting the timing constraints
	Updating the PIPE clock module

	Changing the FPGA part number

	Troubleshooting
	Errors during implementation
	PCIe Hardware problems

