
Getting started with Xillybus on a Linux host

Xillybus Ltd.

www.xillybus.com

Version 4.1

1 Introduction 3

2 Installing the host driver 5

2.1 Stages for installing Xillybus’ driver . 5

2.2 Do you really need to install anything? 6

2.2.1 General . 6

2.2.2 Linux distributions with pre-installed driver 6

2.2.3 Linux kernels that include Xillybus’ driver 7

2.3 Checking for prerequisites . 7

2.4 Uncompressing the downloaded file . 8

2.5 Running the compilation of the kernel module 9

2.6 Installing the kernel module . 10

2.7 Copying the udev rule file . 10

2.8 Loading and unloading the module . 11

2.9 Xillybus drivers in the official Linux kernel 12

3 The “Hello, world” test 14

3.1 The goal . 14

3.2 Preparations . 15

http://xillybus.com/

Xillybus Ltd. www.xillybus.com

3.3 The trivial loopback test . 15

4 Example host applications 18

4.1 General . 18

4.2 Editing and compilation . 19

4.3 Running the programs . 21

4.4 Memory interface . 22

5 Guidelines for high bandwidth performance 24

5.1 Don’t loopback . 24

5.2 Don’t involve the disk or other storage 26

5.3 Read and write large portions . 27

5.4 Pay attention to the CPU consumption 27

5.5 Don’t make reads and writes mutually dependent 28

5.6 Know the limits of the host’s RAM . 29

5.7 DMA buffers that are large enough . 29

5.8 Use the correct width for the data word 30

5.9 Slowdown due to cache synchronization 30

5.10 Tuning of parameters . 31

6 Troubleshooting 32

A A short survival guide to Linux command line 33

A.1 Some keystrokes . 33

A.2 Getting help . 34

A.3 Showing and editing files . 34

A.4 The root user . 35

A.5 Selected commands . 36

Getting started with Xillybus on a Linux host 2

http://xillybus.com/

Xillybus Ltd. www.xillybus.com

1
Introduction

This guide goes through the steps for installing the driver for the purpose of running
Xillybus / XillyUSB on a Linux host. How to try out the basic functionality of the IP core
is also shown.

For the sake of simplicity, it is assumed that the host is a fully capable computer,
which is able to perform compilation. The procedure for an embedded platform is
similar, with a few straightforward differences (in particular, cross compilation may be
necessary).

This guide also assumes that a bitstream which is based upon Xillybus’ demo bundle
has already been loaded into the FPGA, and that the FPGA has been recognized as
a peripheral by the host (through PCI Express, the AXI bus, or USB 3.x, as relevant).

The steps for reaching this stage are outlined in one of these documents (depending
on the chosen FPGA):

• Getting started with the FPGA demo bundle for Xilinx

• Getting started with the FPGA demo bundle for Intel FPGA

• Getting started with Xillinux for Zynq-7000

• Getting started with Xillinux for Cyclone V SoC (SoCKit)

The host driver generates device files which behave like named pipes: These device
files are opened, read from and written to just like any file. However, these files be-
have in a similar way to pipes between processes. This behavior is also similar to
TCP/IP streams. To the program running on the host, the difference is that the other
side of the stream is not another process (on the same computer or on a different
computer on the network) but instead, the other side is a FIFO inside the FPGA. Just

Getting started with Xillybus on a Linux host 3

http://xillybus.com/
http://xillybus.com/downloads/doc/xillybus_getting_started_xilinx.pdf
http://xillybus.com/downloads/doc/xillybus_getting_started_altera.pdf
http://xillybus.com/downloads/doc/xillybus_getting_started_zynq.pdf
http://xillybus.com/downloads/doc/xillybus_getting_started_sockit.pdf

Xillybus Ltd. www.xillybus.com

like a TCP/IP stream, the Xillybus stream is designed to work efficiently with high-rate
data transfers, but the stream also performs well when small amounts of data are
transmitted occasionally.

One single driver on the host is used with all Xillybus IP cores that communicate with
the host through PCIe. A different driver is intended for the AXI interface. There is
also a different driver for XillyUSB.

There is no need to change the driver when a different IP core is used in the FPGA:
The streams and their attributes are automatically detected by the driver as the driver
is loaded into the host’s operating system. The device files are created accordingly,
with file names of the format /dev/xillybus something. Likewise, the driver for XillyUSB
creates device files with the format /dev/xillyusb 00 something. In these file names,
the 00 part is the index of the device. This part is replaced with 01, 02 etc. when more
than one XillyUSB device is connected to the computer at the same time.

More in-depth information on topics related to the host can be found in Xillybus host
application programming guide for Linux.

Getting started with Xillybus on a Linux host 4

http://xillybus.com/
http://xillybus.com/downloads/doc/xillybus_host_programming_guide_linux.pdf
http://xillybus.com/downloads/doc/xillybus_host_programming_guide_linux.pdf

Xillybus Ltd. www.xillybus.com

2
Installing the host driver

2.1 Stages for installing Xillybus’ driver

Installing the Linux kernel driver consists of the following steps:

• Checking if an installation is needed at all. If not, skip the other steps below
(possibly not skipping the last step, i.e. copying the udev file)

• Checking for prerequisites (i.e. checking that the compiler and kernel headers
are installed)

• Uncompressing the downloaded file which contains the driver as a kernel mod-
ule.

• Running a compilation of the kernel module

• Installing the kernel module

• Installing the udev file, so that Xillybus device files become accessible to any
user (and not only root).

These steps are carried out using command-line (“Terminal”). The short Linux survival
guide in Appendix A may be helpful for those who are less experienced with this
interface.

Getting started with Xillybus on a Linux host 5

http://xillybus.com/

Xillybus Ltd. www.xillybus.com

2.2 Do you really need to install anything?

2.2.1 General

The majority of Linux kernels and Linux distributions support Xillybus (for PCIe or AXI)
without a need to do anything. This is explained further below.

That said, it’s worth looking at section 2.7 regarding the installation of a udev file, even
if Xillybus is already supported.

The driver for XillyUSB is part of the Linux kernel from version 5.14 (released in August
2021).

2.2.2 Linux distributions with pre-installed driver

Most Linux distributions have the PCIe / AXI Xillybus driver already installed (“out of
the box”). For example:

• Ubuntu 14.04 and later

• Any fairly recent Fedora distribution

• Xillinux (for the Zynq and Cyclone V SoC platforms only)

In order to quickly check if the driver is installed, type the following at shell prompt:

$ modinfo xillybus_core

If the driver is installed, information about it is printed. Otherwise it says “modinfo:
ERROR: Module xillybus core not found”.

Likewise, to check for XillyUSB’s driver, the command is:

$ modinfo xillyusb

XillyUSB works without any need for installation with Ubuntu 22.04 and later, Fedora
35 and later, as well as distributions that are derived from these two.

Note that if Linux runs inside a virtual machine, it will not detect Xillybus on the PCIe
bus. The operating system with the driver must run on bare metal. XillyUSB may work
inside a virtual machine.

Section 2.7 shows how to permanently change the permissions of the Xillybus device
files. This change makes these files accessible to any user (and not only to the root
user). This modification is often desired when using Xillybus on a desktop computer.

Getting started with Xillybus on a Linux host 6

http://xillybus.com/

Xillybus Ltd. www.xillybus.com

2.2.3 Linux kernels that include Xillybus’ driver

Xillybus’ driver (for PCIe and AXI) is included in the official Linux kernel starting from
version 3.12. In kernels with versions between 3.12 and 3.17, the driver was included
as “staging driver”, which is a preliminary stage before Linux’ community fully accepts
a new driver. Xillybus’ driver was admitted as non-staging in version 3.18. Despite
several changes that are related to coding style, there are almost no functional differ-
ences between the earliest driver (in version 3.12 of the kernel) and the driver that is
available today.

When a staging driver is loaded, the kernel issues a warning in the system log. This
warning says that the driver’s quality is unknown. Regarding Xillybus, this warning
can be ignored safely.

As mentioned above, the driver for XillyUSB is included in the Linux kernel starting
from version 5.14.

Regarding kernels that are a part of a Linux distribution: Even when Xillybus’ drivers
are part of the kernel’s source code, these drivers are included in the compilation only
if the kernel is configured to include these drivers. Xillybus’ drivers are included as
kernel modules in most mainstream Linux distributions, but each distribution has its
own criteria for choosing what to include in the kernel. Accordingly, Xillybus may not
be included in the kernel that arrives along with a distribution.

This guide focuses on installing the drivers by virtue of a separate compilation of
the kernel modules. This is usually the easiest way. However, those who carry out
a compilation of their kernel anyhow, may instead prefer to configure the kernel to
include Xillybus’ drivers. This method is discussed in section 2.9.

2.3 Checking for prerequisites

A Linux system may lack the basic tools for a kernel module compilation. The simplest
way to know if these tools exist is to attempt running them. For example, type “make
coffee” on command prompt. This is the correct response:

$ make coffee

make: *** No rule to make target ‘coffee’. Stop.

Even though this is an error, we can see that the “make” utility exists. But if GNU make
is missing and needs to be installed, the output will be something like this:

Getting started with Xillybus on a Linux host 7

http://xillybus.com/

Xillybus Ltd. www.xillybus.com

$ make coffee

bash: make: command not found

The C compiler is needed as well. Type “gcc” in order to check if the compiler is
installed:

$ gcc

gcc: no input files

This response indicates that “gcc” is installed. There was an error message again,
but not “command not found”.

On top of these two tools, the kernel headers need to be installed as well. This is a bit
more difficult to check up. The common way to know if these files are missing is when
the kernel compilation fails with an error saying that a header file is missing.

A kernel module compilation is a common task, so there is a lot of information on the
Internet that is specific to each Linux distribution regarding how to prepare the system
for the compilation.

On Fedora, RHEL, CentOS and other derivatives of Red Hat, a command of this sort
is likely to get the computer prepared:

yum install gcc make kernel-devel-$(uname -r)

For Ubuntu and other distributions that are based upon Debian:

apt install gcc make linux-headers-$(uname -r)

IMPORTANT:

These installation commands must be issued as root. Those who are not familiar
with the concept of being the root user are urged to learn about it first. See the
Appendix’ section A.4.

2.4 Uncompressing the downloaded file

After downloading the driver from Xillybus’ site, change directory to where the down-
loaded file is. At command prompt, type (excluding the $ sign):

$ tar -xzf xillybus.tar.gz

Getting started with Xillybus on a Linux host 8

http://xillybus.com/

Xillybus Ltd. www.xillybus.com

For the XillyUSB driver:

$ tar -xzf xillyusb.tar.gz

There should be no response, just a new command prompt.

2.5 Running the compilation of the kernel module

Change directory to where the source code of the kernel module is. For the Xillybus
driver:

$ cd xillybus/module

And for the XillyUSB driver:

$ cd xillyusb/driver

Type “make” to carry out the compilation of the modules. The transcript should be
something like this:

$ make

make -C /lib/modules/3.10.0/build SUBDIRS=/home/myself/xillybus/module modules

make[1]: Entering directory ‘/usr/src/kernels/3.10.0’

CC [M] /home/myself/xillybus/module/xillybus_core.o

CC [M] /home/myself/xillybus/module/xillybus_pcie.o

Building modules, stage 2.

MODPOST 2 modules

CC /home/myself/xillybus/module/xillybus_core.mod.o

LD [M] /home/myself/xillybus/module/xillybus_core.ko

CC /home/myself/xillybus/module/xillybus_pcie.mod.o

LD [M] /home/myself/xillybus/module/xillybus_pcie.ko

make[1]: Leaving directory ‘/usr/src/kernels/3.10.0’

The details may vary slightly, but no errors or warnings should appear. For XillyUSB,
only a single module, xillyusb.ko, is generated.

Note that the compilation of the kernel modules is specific to the kernel that is running
during the compilation.

If another kernel is intended for use, type “make TARGET=kernel-version”, where
“kernel-version” is the name of the required version of the kernel. This is the name
that appears in /lib/modules/. Alternatively, edit the following line in the file with the
name “Makefile”:

Getting started with Xillybus on a Linux host 9

http://xillybus.com/

Xillybus Ltd. www.xillybus.com

KDIR := /lib/modules/$(TARGET)/build

Change the value of KDIR to the path of the required kernel headers.

2.6 Installing the kernel module

Without changing directory, change the user to root (e.g. with “sudo su”). Then type
the following command:

make install

This command can take a few seconds to complete, but shouldn’t generate any errors.

If this fails, copy the *.ko files that were generated by the compilation to an existing
subdirectory for kernel modules. Then run depmod. The following example shows
how to do this for the PCIe driver, if the relevant version of the kernel is 3.10.0:

cp xillybus_core.ko /lib/modules/3.10.0/kernel/drivers/char/

cp xillybus_pcie.ko /lib/modules/3.10.0/kernel/drivers/char/

depmod -a

The installation does not load the module into the kernel immediately. This is done
on the next boot of the system if a Xillybus peripheral is discovered. How to load the
module manually is shown in section 2.8.

For XillyUSB, a reboot is not necessary: The module is loaded automatically the next
time the USB device is connected to the computer.

2.7 Copying the udev rule file

By default, Xillybus device files are accessible only by their owner, which is root. It
makes a lot of sense to make these files accessible to any user, so that working as
root can be avoided. The udev mechanism changes the file permissions when the
device files are generated, by obeying specific rules.

How to enable this feature: Remain in the same directory, and remain being the root
user. Copy the udev rule file to where such files are stored in your system (most likely
/etc/udev/rules.d/).

For example:

Getting started with Xillybus on a Linux host 10

http://xillybus.com/

Xillybus Ltd. www.xillybus.com

cp 10-xillybus.rules /etc/udev/rules.d/

The content of this file is simply:

SUBSYSTEM=="xillybus", MODE="666", OPTIONS="last_rule"

This means that all files that are generated by the Xillybus device driver should be
given permission mode 0666. In other words, reading and writing is allowed to every-
one.

For XillyUSB, the file is 10-xillyusb.rules, containing

SUBSYSTEM=="xilly*", KERNEL=="xillyusb_*", MODE="0666"

Note that the udev file can be changed to achieve different results. For example, it’s
possible to change the device files’ owner instead, so only a specific user has access
to these files.

2.8 Loading and unloading the module

In order to load the module (and start working with Xillybus), type as root:

modprobe xillybus_pcie

Or, for XillyUSB:

modprobe xillyusb

This will make the Xillybus device files appear (assuming that a Xillybus device is
detected on the bus).

Note that this should not be necessary if a Xillybus PCIe / AXI peripheral was detected
when the system carried out its boot process and the driver was already installed as
described above. Neither is this necessary if a XillyUSB device is connected to the
computer when the driver is already installed.

To see a list of modules in the kernel, type “lsmod”. To remove the module from the
kernel, type (for the PCIe driver)

rmmod xillybus_pcie xillybus_core

Getting started with Xillybus on a Linux host 11

http://xillybus.com/

Xillybus Ltd. www.xillybus.com

This will make the device files vanish.

If something seems to have gone wrong, please check up the /var/log/syslog file for
messages containing the word “xillybus” or “xillyusb”, as applicable. Valuable clues
are often found in this log file. The same log information is also accessible with the
“dmesg” command.

If no /var/log/syslog log file exists, it’s probably /var/log/messages instead. Possibly
try the command “journalctl -k”.

2.9 Xillybus drivers in the official Linux kernel

As mentioned before, the driver for Xillybus is included in the Linux kernel, starting
from version v3.12.0. It’s therefore possible to carry out a compilation of the entire
kernel, so that this kernel supports Xillybus. This is an alternative to installing the
kernel modules separately, as shown above.

From a functional point of view, the method that involves kernel compilation yields the
same result as the steps described in sections 2.3 to 2.6.

In order to include Xillybus’ driver in a kernel that is intended for compilation, it is
necessary to enable a few kernel configuration options. There are two ways to include
the driver: Either as kernel modules or as part of the kernel image.

For example, this is the part that enables Xillybus’ driver for the PCIe interface in the
kernel’s configuration file (.config):

CONFIG_XILLYBUS=m

CONFIG_XILLYBUS_PCIE=m

“m” means that the driver is included as a kernel module. “y” means to include the
driver in the kernel image.

Likewise, for XillyUSB (with kernel v5.14 and later):

CONFIG_XILLYUSB=m

The common way to make changes to .config is to use the kernel’s configuration tools:
“make config”, “make xconfig” or “make gconfig”.

xconfig and gconfig are GUI tools that are easier to use, because they allow searching
for the string “xillybus” in order to find Xillybus’ drivers. The driver is enabled by clicking
on checkboxes. The textual representation of the .config file helps to verify that the
correct options have been set.

Getting started with Xillybus on a Linux host 12

http://xillybus.com/

Xillybus Ltd. www.xillybus.com

On kernels that have a version below 3.18, it may be required to enable staging drivers
before attempting to enable Xillybus. This results in the following line in the .config file.

CONFIG_STAGING=y

After enabling Xillybus’ driver in the .config file, run the kernel compilation as usual.

Starting from kernel 5.14, an option with the name CONFIG XILLYBUS CLASS is
automatically enabled when a driver for Xillybus or XillyUSB is enabled. This is a
result of the configuration system’s dependency rules. Changing this option manually
is therefore unnecessary (and often impossible).

Getting started with Xillybus on a Linux host 13

http://xillybus.com/

Xillybus Ltd. www.xillybus.com

3
The “Hello, world” test

3.1 The goal

Xillybus is a tool that is intended as a building block in a logic design. The best way to
learn about Xillybus’ capabilities is hence to integrate it with your own user application
logic. The demo bundle’s purpose is to be a starting point for working with Xillybus.

Therefore, the simplest possible application is implemented in the demo bundle: A
loopback between two device files. This is achieved by connecting both sides of a
FIFO to the Xillybus IP Core in the FPGA. As a result, when the host writes data to
one device file, the FPGA returns the same data to the host through another device
file.

The next few sections below explain how to test this simple functionality. This test is
a simple method to verify that Xillybus operates correctly: The IP Core in the FPGA
works as expected, the host detects the PCIe peripheral correctly, and the driver is
installed properly. On top of that, this test is also an opportunity to learn how Xillybus
works by making small modifications to the logic design in the FPGA.

As a first step, it’s recommended to make simple experiments with the demo bundle
in order to understand how the logic in the FPGA and the device files work together.
This alone often clarifies how to use Xillybus for your own application’s needs.

Aside from the loopback that is mentioned above, the demo bundle also implements a
RAM and an additional loopback. This additional loopback is discussed briefly below.
Regarding the RAM, it demonstrates how to access a memory array or registers. More
information about this in section 4.4.

Getting started with Xillybus on a Linux host 14

http://xillybus.com/

Xillybus Ltd. www.xillybus.com

3.2 Preparations

A few preperations are required in order to perform the “Hello world” test:

• Xillybus’ driver is installed on the computer, as described in section 2.

• The FPGA must be loaded with the bitstream that is created from a demo bundle
(without modifications). How to achieve this is explained in Getting started with
the FPGA demo bundle for Xilinx or Getting started with the FPGA demo bundle
for Intel FPGA.

Those who use Xillinux (with Zynq or Cyclone V SoC), see Getting started
with Xillinux for Zynq-7000 or Getting started with Xillinux for Cyclone V SoC
(SoCKit): The demo bundle is already included in this system by default.

• Relevant for PCIe only: The FPGA was detected on the PCIe bus when the
computer performed boot. This can be verified using the “lspci” command.

• Relevant for USB only: The FPGA is connected to the computer through a USB
port, and the computer has detected the FPGA as a USB device. This can be
verified using the “lsusb” command.

• You should be comfortable with using Linux command-line. Appendix A may
help with this.

If these preparations have been done correctly, Xillybus’ device files should be avail-
able. For example, a file named /dev/xillybus read 8 should exist.

3.3 The trivial loopback test

The easiest way to perform this test is using a Linux command-line utility that is named
“cat”:

Open two terminal windows. On some computers, this can be done by double-clicking
an icon with the name “Terminal”. If there is no such icon, search for it in the desktop’s
menus.

On the first terminal window, type the following command at command prompt (don’t
type the dollar sign, it’s the prompt):

$ cat /dev/xillybus_read_8

Getting started with Xillybus on a Linux host 15

http://xillybus.com/
http://xillybus.com/downloads/doc/xillybus_getting_started_xilinx.pdf
http://xillybus.com/downloads/doc/xillybus_getting_started_xilinx.pdf
http://xillybus.com/downloads/doc/xillybus_getting_started_altera.pdf
http://xillybus.com/downloads/doc/xillybus_getting_started_altera.pdf
http://xillybus.com/downloads/doc/xillybus_getting_started_zynq.pdf
http://xillybus.com/downloads/doc/xillybus_getting_started_zynq.pdf
http://xillybus.com/downloads/doc/xillybus_getting_started_sockit.pdf
http://xillybus.com/downloads/doc/xillybus_getting_started_sockit.pdf

Xillybus Ltd. www.xillybus.com

This makes the “cat” program print out everything it reads from the xillybus read 8
device file. Nothing is expected to happen at this stage.

Those using XillyUSB will find the device file as xillyusb 00 read 8 instead. The “xil-
lyusb” prefix is obvious, and the “00” index is intended to allow multiple USB devices
to be connected to the same host. The naming convention for PCIe and for AXI is
used in this guide.

On the second terminal window, type

$ cat > /dev/xillybus_write_8

Note the > character. It tells “cat” to send everything that is typed on the console to
xillybus write 8 (redirection).

Now type some text on the second terminal, and press ENTER. The same text will
appear on the first terminal. Nothing is sent to xillybus write 8 until ENTER is pressed.
This is a common convention on Linux computers.

Both of these two “cat” commands can be stopped with CTRL-C.

If an error message is encountered while attempting these two “cat” commands, first
verify that the device files have been created (i.e. that /dev/xillybus read 8 and /dev/x-
illybus write 8 exist). Also verify that there are no typos.

If the error is “permission denied”, this can be fixed as shown in section 2.7. However,
note that a udev file becomes effective only when the kernel modules are loaded into
the kernel. Refer to section 2.8 on how to reload the kernel modules. Alternatively,
perform a reboot on the computer.

Another possibility to overcome the “permission denied” error is to work with the Xilly-
bus device files as the root user. This is less recommended on desktop computers
(but this is commonly done on embedded platforms). More about this in Appendix
section A.4.

For other errors, follow the guidelines in section 2.8 on finding more information in
/var/log/syslog or by using the “dmesg” command (or similar methods for obtaining
the kernel log).

It’s also possible to perform trivial file operations. For example, without stopping the
“cat” command in the first terminal, type the following in the second terminal:

$ date > /dev/xillybus_write_8

Note that the FIFOs inside the FPGA are not at risk for overflow nor underflow: The
core respects the ’full’ and ’empty’ signals inside the FPGA. When necessary, the

Getting started with Xillybus on a Linux host 16

http://xillybus.com/

Xillybus Ltd. www.xillybus.com

Xillybus driver forces the computer program to wait until the FIFO is ready for I/O. This
is called blocking, which means forcing the user space program to sleep.

There is another pair of device files that have a loopback between them: /dev/xilly-
bus read 32 and /dev/xillybus write 32. These device files work with a 32-bit word,
and this is also true for the FIFO inside the FPGA. The “hello world” test with these
device files will therefore result in similar behavior, with one difference: All I/O is car-
ried out in groups of 4 bytes. Therefore, when the input hasn’t reached a boundary of
4 bytes, the last bytes from the input will remain untransmitted.

Getting started with Xillybus on a Linux host 17

http://xillybus.com/

Xillybus Ltd. www.xillybus.com

4
Example host applications

4.1 General

There are four or five simple C programs that demonstrate how to access Xillybus’
device files. These programs can be found in the the compressed file that contains
the host driver for Xillybus / XillyUSB (available for download on the website). Refer
to the “demoapps” directory, which consists of the following files:

• Makefile – This file contains the rules that are used by the “make” utility for the
purpose of the programs’ compilation.

• streamread.c – Reads from a file, sends data to standard output.

• streamwrite.c – Reads data from standard input, sends to file.

• memread.c – Reads data after performing seek. Demonstrates how to access a
memory interface in the FPGA.

• memwrite.c – Writes data after performing seek. Demonstrates how to access
a memory interface in the FPGA.

The purpose of these programs is to show correct coding style. They can also be
used as a basis for writing your own programs. However, neither of these programs is
intended for use in a real-life application, in particular because these programs don’t
perform well with high data rates. See chapter 5 for guidelines on achieving high
bandwidth performance.

These programs are very simple, and merely demonstrate the standard methods for
accessing files on a Linux computer. These methods are discussed in detail in the

Getting started with Xillybus on a Linux host 18

http://xillybus.com/

Xillybus Ltd. www.xillybus.com

Xillybus host application programming guide for Linux. For these reasons, there are
no detailed explanations about these programs here.

Note that these programs use the low-level API, e.g. open(), read(), and write(). The
more well-known API (fopen(), fread(), fwrite() etc.) is avoided, because it relies on
data buffers that are maintained by the C runtime library. These data buffers may
cause confusion, in particular because the communication with the FPGA is often
delayed by the runtime library.

Those who download the driver for PCIe will find a fifth program in the “demoapps”
directory: fifo.c. This program demonstrates the implementation of a userspace RAM
FIFO. This program is rarely useful, because the device file’s RAM buffers can be
configured to be sufficient for almost all scenarios. fifo.c is hence useful only for very
high data rates, and when the RAM buffer needs to very large (i.e. several gigabytes).

This program is not included along with XillyUSB’s driver, because the data rates that
may require fifo.c are not possible with XillyUSB.

4.2 Editing and compilation

If you’re experienced with compilation of programs in Linux, you may skip to the next
section: The compilation of Xillybus’ example programs is done with “make” in the
usual way.

First and foremost, change directory to where the C files are:

$ cd demoapps

To run a compilation of all five programs, just type “make” at shell prompt. The follow-
ing transcript is expected:

$ make

gcc -g -Wall -O3 memwrite.c -o memwrite

gcc -g -Wall -O3 memread.c -o memread

gcc -g -Wall -O3 streamread.c -o streamread

gcc -g -Wall -O3 streamwrite.c -o streamwrite

gcc -g -Wall -O3 -pthread fifo.c -o fifo

The five rows that start with “gcc” are the commands that are requested by “make”
in order to use the compiler. These commands can be used for compilation of the
programs separately. However, there is no reason to do so. Just use “make”.

Getting started with Xillybus on a Linux host 19

http://xillybus.com/
http://xillybus.com/downloads/doc/xillybus_host_programming_guide_linux.pdf

Xillybus Ltd. www.xillybus.com

On some systems, the fifth compilation (of fifo.c) may fail if the POSIX threads library
isn’t installed (e.g. in some installations of Cygwin). This error can be ignored if you
don’t have an intention to use fifo.c.

The “make” utility runs compilation only on what is necessary. If only one file is
changed, “make” will request the compilation of only that file. So the normal way
to work is to edit the file you want to edit, and then use “make” for a recompilation. No
unnecessary compilation will take place.

Use “make clean” in order to remove the executables that were generated by a previ-
ous compilation.

As mentioned above, the Makefile contains the rules for the compilation. The syntax
of this file is not simple, but fortunately it is often possible to make changes to this file
by using just common sense.

A Makefile relates to the files that are in the same directory as the Makefile itself. It is
therefore possible to make a copy of the entire directory, and work on the files that are
inside this replica. The two copies of the directory will not interfere with each other.

It is also possible to add a C file and easily change the Makefile, so that “make” also
runs a compilation of this new file. For example, suppose that memwrite.c is copied
to a new file, which is named mygames.c. This can be done with the GUI interface or
with command line:

$ cp memwrite.c mygames.c

The next step is to edit the Makefile. There are many text editors and numerous ways
to run each of them. On most systems, it is possible to start a GUI editor from the
shell prompt by typing “gedit” or “xed”. However, it’s easier to find a GUI text editor in
the computer desktop’s menus. There are also many text editors that work inside the
terminal window, for example vim, emacs, nano and pico.

Which editor to use is a matter of taste and personal experience. For example, this
command can be used to start editing the Makefile:

$ xed Makefile &

The ’&’ at the end of the command tells the shell to not wait until the program fin-
ishes: The next shell prompt appears immediately. This is suitable for starting GUI
applications, among others.

The row that should be changed in Makefile is:

Getting started with Xillybus on a Linux host 20

http://xillybus.com/

Xillybus Ltd. www.xillybus.com

APPLICATIONS=memwrite memread streamread streamwrite

This row is changed to:

APPLICATIONS=memwrite memread streamread streamwrite mygames

The compilation of mygames.c will take place on the next time you type “make”.

4.3 Running the programs

The simple loopback example that is shown in section 3.3 can be done with two of the
example programs.

Let’s assume that “demoapps” is already the current directory and that a compilation
has already been done with “make’.

Type this in the first terminal:

$./streamread /dev/xillybus_read_8

This is the program that reads from the device file.

Note that the command begins with “./”: It is necessary to explicitly point at the di-
rectory of the executable. In this example, the expression “./” is used to request the
current directory.

And then, in the second terminal window:

$./streamwrite /dev/xillybus_write_8

This works more or less like with the example with “cat”. The difference is that
“streamwrite” doesn’t wait for ENTER before sending the data to the device file. In-
stead, this program attempts to operate separately on each character. In order to
achieve this, the program uses a function called config console(). This function is
used only for the purpose of an immediate response to typing on the keyboard. This
has nothing to do with Xillybus.

The examples above relate to Xillybus for PCIe / AXI. With XillyUSB, the names of the
device files have a slightly different prefix. For example, xillyusb 00 read 8 instead of
xillybus read 8.

Getting started with Xillybus on a Linux host 21

http://xillybus.com/

Xillybus Ltd. www.xillybus.com

IMPORTANT:

The I/O operations that are performed by streamread and streamwrite are ineffi-
cient: In order to make these programs simpler, the size of the I/O buffer is only
128 bytes. When a high data rate is required, larger buffers should be used. See
section 5.3.

4.4 Memory interface

The memread and memwrite programs are more interesting, because they demon-
strate how to access memory on the FPGA. This is achieved by making function calls
to lseek() on the device file. There is a section in Xillybus host application program-
ming guide for Linux that explains this API in relation to Xillybus’ device files.

Note that in the demo bundle, only xillybus mem 8 allows seeking. This device file is
also the only one that can be opened for both read and for write.

Before writing to the memory, the existing situation can be observed by using the
hexdump utility:

$ hexdump -C -v -n 32 /dev/xillybus_mem_8

00000000 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|

00000010 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|

00000020

This output is the first 32 bytes in the memory array: hexdump opened /dev/xilly-
bus mem 8 and read 32 bytes from this device file. When a file that allows lseek() is
opened, the initial position is always zero. Hence the output consists of the data in the
memory array, from position 0 to position 31.

It’s possible that your output will be different: This output reflects the FPGA’s RAM,
which may contain other values. In particular, these values may be different from zero
as a result of previous experiments with the RAM.

A few words about hexdump’s flags: The format of the output that is shown above is
the result of “-C” and “-v”. “-n 32” means to show first 32 bytes only. The memory
array is just 32 bytes long, so it’s pointless to read more than so.

memwrite can be used to change a value in the array. For example, the value at
address 3 is changed to 170 (0xaa in hex format) with this command:

$./memwrite /dev/xillybus_mem_8 3 170

Getting started with Xillybus on a Linux host 22

http://xillybus.com/
http://xillybus.com/downloads/doc/xillybus_host_programming_guide_linux.pdf
http://xillybus.com/downloads/doc/xillybus_host_programming_guide_linux.pdf

Xillybus Ltd. www.xillybus.com

In order to verify that the command worked, it’s possible to repeat the hexdump com-
mand from above:

$ hexdump -C -v -n 32 /dev/xillybus_mem_8

00000000 00 00 00 aa 00 00 00 00 00 00 00 00 00 00 00 00 |...ł............|

00000010 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|

00000020

So evidently, the command worked.

In memwrite.c, the important part is where it says “lseek(fd, address, SEEK SET)”.
This function call changes the position of the device file. Consequently, this changes
the address of the array’s element that is accessed inside the FPGA. The subsequent
read operation or write operation starts from this position. Each such access incre-
ments the position according to the number of bytes that were transferred.

A device file that allows seeking is also useful for easily sending configuration com-
mands to the FPGA. As already mentioned, when a file that allows lseek() is opened,
the initial position is always zero. This also holds true for a command like in this
example:

$ echo -n 010111 > /dev/xillybus_mem_8

Note the “-n” part in the “echo” command. This prevents “echo” from adding a newline
character at the end of its output.

This command writes the ASCII code of “0” (the value 0x30) to the address zero.
Likewise, the value 0x31 is written to address 1, and so on. So this simple “echo”
command can be used to set the values of several registers at once.

This is a convenient method, because the implementation on the FPGA is simple. For
example, suppose that only the characters “0” and “1” are intended for use with the
“echo” command. Accordingly, only bit 0 is important. This is an example of a register
that obtains its value from the third byte of the “echo” command:

reg my_register;

always @(posedge bus_clk)

if (user_w_mem_8_wren && (user_mem_8_addr == 2))

my_register <= user_w_mem_8_data[0];

This method is relevant in particular for running tests while developing the FPGA’s
logic.

Getting started with Xillybus on a Linux host 23

http://xillybus.com/

Xillybus Ltd. www.xillybus.com

5
Guidelines for high bandwidth performance

The users of Xillybus’ IP cores often perform data bandwidth tests in order to ensure
that the advertised data transfer rates are indeed met. Achieving these goals requires
avoiding bottlenecks that may slow down the data flow considerably.

This section is a collection of guidelines, which is based upon the most common
mistakes. Following these guidelines should result in bandwidth measurements that
are equal to or slightly better than published.

It is of course important to follow these guidelines in the implementation of the project
that is based on Xillybus, so that this project utilizes the IP core’s full capabilities.

Often the problem is that the host doesn’t process the data quickly enough: Measuring
the data rate incorrectly is the most common reason for complaints about not being
able to attain the published number. The recommended method is using the Linux’
“dd” command, as shown in section 5.3 below.

The information in this section is relatively advanced for a “Getting Started” guide.
This discussion also makes references to advanced topics that are explained in other
documents. These guidelines are nevertheless given in this guide because many
users carry out performance tests at the early stages of getting acquainted with the
IP core.

5.1 Don’t loopback

In the demo bundle (inside the FPGA) there is a loopback between the two pairs of
streams. This makes the “Hello, world” test possible (see section 3), but this is bad for
testing performance.

The problem is that the Xillybus IP core fills the FIFO inside the FPGA very quickly with

Getting started with Xillybus on a Linux host 24

http://xillybus.com/

Xillybus Ltd. www.xillybus.com

data transfer bursts. Because this FIFO becomes full, the data flow stops momentarily.

The loopback is implemented with this FIFO, so both sides of this FIFO are connected
to the IP core. In response to the existence of data in the FIFO, the IP core fetches
this data from the FIFO and sends it back to the host. This too happens very quickly,
so the FIFO becomes empty. Once again, the data flow stops momentarily.

As a result of these momentary pauses in the data flow, the measured data transfer
rate is lower than expected. This happens because the FIFO is too shallow, and
because the IP core is responsible for both filling and emptying the FIFO.

In a real-life scenario there is no loopback. Rather, there is application logic on the
FIFO’s other side. Let’s consider the usage scenario that attains the maximal data
transfer rate: In this scenario, the application logic consumes the data from the FIFO
as quickly as the IP core fills this FIFO. The FIFO is therefore never full.

Likewise for the opposite direction: The application logic fills the FIFO as quickly as
the IP core consumes data. The FIFO is therefore never empty.

From a functional point of view, there’s no problem that the FIFO occasionally be-
comes full or empty. This merely causes the data flow to stall momentarily. Everything
works correctly, just not at the maximal speed.

The demo bundle is easily modified for the purpose of a performance test: For exam-
ple, in order to test /dev/xillybus read 32, disconnect user r read 32 empty from the
FIFO inside the FPGA. Instead, connect this signal to a constant zero. As a result, the
IP core will think that the FIFO is never empty. Hence the data transfers are performed
the maximal speed.

This means that the IP core will occasionally read from an empty FIFO. As a result,
the data that arrives to the host will not always be valid (due to underflow). But for
a speed test, this doesn’t matter. If the content of the data is important, a possible
solution is that application logic fills the FIFO as quickly as possible (for example, with
the output of a counter).

Likewise for testing /dev/xillybus write 32: Disconnect user w write 32 full from the
FIFO, and connect this signal to a constant zero. The IP core will think that the FIFO
is never full, so the data transfer is performed at maximal speed. The data that is sent
to the FIFO will be partially lost due to overflow.

Note that disconnecting the loopback allows testing each direction separately. How-
ever, this is also the correct way to test both directions simultaneously.

Getting started with Xillybus on a Linux host 25

http://xillybus.com/

Xillybus Ltd. www.xillybus.com

5.2 Don’t involve the disk or other storage

Disks, solid-state drives and other kinds of computer storage are often the reason
why bandwidth expectations aren’t met. It is a common mistake to overestimate the
storage medium’s speed.

The operating system’s cache mechanism adds to the confusion: When data is written
to the disk, the physical storage medium is not always involved. Rather, the data is
written to RAM instead. Only later is this data written to the disk itself. It’s also possible
that a read operation from the disk doesn’t involve the physical medium. This happens
when the same data has already been read recently.

The cache can be very large on modern computers. Several Gigabytes of data can
therefore flow before the disk’s real speed limitation becomes visible. This often leads
users into thinking that something is wrong with Xillybus’ data transport: There is no
other explanation to this sudden change in the data transfer rate.

With solid-state drives (flash), there is an additional source of confusion, in particular
during long and continuous write operations: In the low-level implementation of a
flash drive, unused segments (blocks) of memory must be erased as a preparation for
writing to the flash. This is because writing data to flash memory is allowed only to a
blocks that is erased.

As a starting point, a flash drive usually has a lot of of blocks that are already erased.
This makes the write operation fast: There is a lot of space to write the data to.
However, when there are no more erased blocks, the flash drive is forced to erase
blocks and possibly perform defragmentation of the data. This can lead to a significant
slowdown that has no apparent explanation.

For these reasons, testing Xillybus’ bandwidth should never involve any storage medium.
Even if the storage medium appears to be fast enough during a short test, this can be
misleading.

It’s a common mistake to estimate performance by measuring the time it takes to copy
data from a Xillybus device file into a large file on the disk. Even though this operation
is correct functionally, measuring performance this way can turn out completely wrong.

If the storage is intended as a part of an application (e.g. data acquisition), it’s rec-
ommended test this storage medium thoroughly: An extensive, long-term test on the
storage medium should be made to verify that it meets its expectations. A short bench-
mark test can be extremely misleading.

Getting started with Xillybus on a Linux host 26

http://xillybus.com/

Xillybus Ltd. www.xillybus.com

5.3 Read and write large portions

Each function call to read() and to write() results in a system call to the operating
system. A lot of CPU cycles are therefore required for carrying out these function calls.
It’s hence important that the size of the buffer is large enough, so that fewer system
calls are carried out. This is true for bandwidth tests as well as a high-performance
application.

Usually, 128 kB is a good size for the buffer of each function call. This means that
each such function call is limited to a maximum of 128 kB. However, these function
calls are allowed to transfer less data.

It’s important to note that the example programs that were mentioned in section 4.3
(streamread and streamwrite) are not suitable for measuring performance: The buffer
size in these programs is 128 bytes (not kB). This simplifies the examples, but makes
the programs too slow for a performance test.

The following shell commands can be used for a speed check (replace the /dev/xilly-
bus * names as required):

dd if=/dev/zero of=/dev/xillybus_sink bs=128k

dd if=/dev/xillybus_source of=/dev/null bs=128k

These commands run until they are stopped with CTRL-C. Add “count=” in order to
carry out the tests for a fixed amount of data.

5.4 Pay attention to the CPU consumption

In applications with a high data rate, the computer program is often the bottleneck,
and not necessarily the data transport.

It’s a common mistake is to overestimate the CPU’s capabilities. Unlike common
belief, when the data rate is above 100-200 MB/s, even the fastest CPUs struggle to
do anything meaningful with the data. The performance can be improved with multi-
threading, but it may come as a surprise that this should be necessary.

Sometimes an inadequate size of the buffers (as mentioned above) can lead to ex-
cessive CPU consumption as well.

It’s therefore important to keep an eye on the CPU consumption. A utility program
like “top” can be used for this purpose. However, the output of this program (as well
as similar alternatives) can be misleading on computers with multiple processor cores
(i.e. practically all computers nowadays). For example, if there are four processor

Getting started with Xillybus on a Linux host 27

http://xillybus.com/

Xillybus Ltd. www.xillybus.com

cores, what does 25% CPU mean? Is it a low CPU consumption, or is it 100% on a
specific thread? If “top” is used, that depends on the version of the program.

Another thing to note, is how system calls’ processing time is measured and displayed:
If the operating system’s overhead slows down the data flow, how is this measured?

A simple way to examine this is using the “time” utility. For example,

$ time dd if=/dev/zero of=/dev/null bs=128k count=100k

102400+0 records in

102400+0 records out

13421772800 bytes (13 GB) copied, 1.07802 s, 12.5 GB/s

real 0m1.080s

user 0m0.005s

sys 0m1.074s

The output of “time” at the bottom indicates that the time it took for “dd” to complete
was 1.080 seconds. Out of this time, the processor carried out the user space program
during 5 ms, and it was busy during 1.074 seconds with system calls. So in this
specific example, it’s obvious that the processor was busy performing system calls
almost all the time. This is not a surprise, because “dd” is not doing anything here.

5.5 Don’t make reads and writes mutually dependent

When communication in both directions is required, it’s a common mistake to write a
computer program with only one thread. This program usually has one loop, which
does the reading as well as the writing: For each iteration, data is written towards the
FPGA, and then data is read in the opposite direction.

Sometimes there is no problem with a program like this, for example if the two streams
are functionally independent. However, the intention behind a program like this is often
that the FPGA should perform coprocessing. This programming style is based upon
the misconception that the program should send a portion of data for processing, and
then read back the results. Hence the iteration constitutes the processing of each
portion of data.

Not only is this method inefficient, but the program often gets stuck. Section 6.6 of
Xillybus host application programming guide for Linux elaborates more on this topic,
and suggests a more adequate programming technique.

Getting started with Xillybus on a Linux host 28

http://xillybus.com/
http://xillybus.com/downloads/doc/xillybus_host_programming_guide_linux.pdf

Xillybus Ltd. www.xillybus.com

5.6 Know the limits of the host’s RAM

This is relevant mostly to embedded systems and/or when using a revision XL / XXL
IP core: There is a limited data bandwidth between the motherboard (or embedded
processor) and the DDR RAM. This limitation is rarely noticed in usual usage of the
computer. But for very demanding applications with Xillybus, this limit can be the
bottleneck.

Keep in mind that each transfer of data from the FPGA to a user space program
requires two operations on the RAM: The first operation is when the FPGA writes
the data into a DMA buffer. The second operation is when the driver copies this
data into a buffer that is accessible by the user space program. For similar reasons,
two operations on the RAM are required when the data is transferred in the opposite
direction as well.

The separation between DMA buffers and user space buffers is required by the op-
erating system. All I/O that uses read() and write() (or similar function calls) must be
carried out in this way.

For example, a test of an XL IP core is expected to result in 3.5 GB/s in each direction,
i.e. 7 GB/s in total. However, the RAM is accessed double as much. Hence the RAM’s
bandwidth requirement is 14 GB/s. Not all motherboards have this capability. Also
keep in mind that the host uses the RAM for other tasks at the same time.

With revision XXL, even a simple test in one direction might exceed the RAM’s band-
width capability, for the same reason.

5.7 DMA buffers that are large enough

This is rarely an issue, but still worth mentioning: If too little RAM is allocated on the
host for DMA buffers, this may slow down the data transport. The reason is that the
host is forced to divide the data stream into small segments. This causes a waste of
CPU cycles.

All demo bundles have enough DMA memory for performance testing. This is also true
for IP cores that are generated at the IP Core Factory correctly: “Autoset Internals” is
enabled and “Expected BW” reflects the required data bandwidth. “Buffering” should
be selected to be 10 ms, even though any option is most likely fine.

Generally speaking, this is enough for a bandwidth test: At least four DMA buffers that
have a total amount of RAM that corresponds to the data transfer during 10 ms. The
required data transfer rate must be taken into account, of course.

Getting started with Xillybus on a Linux host 29

http://xillybus.com/

Xillybus Ltd. www.xillybus.com

5.8 Use the correct width for the data word

Quite obviously, the application logic can transfer only one word of data to the IP core
for each clock cycle inside the FPGA. Hence there is a limit on the data transfer rate
because of the data word’s width and bus clk’s frequency.

On top of that, there is a limitation that is related to IP cores with the default revision
(revision A IP cores): When the word width is 8 bits or 16 bits, the PCIe’s capabilities
are not used as efficiently as when the word width is 32 bits. Applications and tests
that require high performance should therefore use 32 bits only. This does not apply
to revision B IP cores and later revisions.

The word width can be up to 256 bits starting with revision B. The word should be at
least as wide as the PCIe block’s width. Hence for a data bandwidth test, these data
word widths are required:

• Default revision (Revision A): 32 bits.

• Revision B: At least 64 bits.

• Revision XL: At least 128 bits.

• Revision XXL: 256 bits.

If the data word is wider than required above (when possible), slightly better results
are usually achieved. The reason is an improvement of the data transfer between the
application logic and the IP core.

5.9 Slowdown due to cache synchronization

This issue does not apply to computers that are based upon CPUs that belong to
the x86 family (32 and 64 bits). Those who use Xillybus with the AXI bus of a Zynq
processor (e.g. with Xillinux) can also ignore this topic.

However, several embedded processors require an explicit synchronization of the
cache when DMA buffers are used. This slows down the data transfer with the CPU’s
peripherals considerably.

This problem is not specific to Xillybus: Similar behavior is observed with all I/O that
is based upon DMA, e.g. Ethernet, USB and other peripherals.

A slowdown because of the cache can be revealed by looking at the CPU consump-
tion. If the CPU spends an unreasonable amount of time in the system call state (“sys”

Getting started with Xillybus on a Linux host 30

http://xillybus.com/

Xillybus Ltd. www.xillybus.com

row output of the “time” utility), this may indicate that the cache is the problem. This
happens because the CPU is spending a lot of time performing cache synchroniza-
tion.

However, it’s important to first rule out the possibility of small buffers (as mentioned in
sections 5.3 and 5.7 above).

This problem never happens with the x86 family because these CPUs have coherent
cache. Hence no cache synchronization is required. The same applies for Xillinux,
because the IP core is connected to the CPU through the ACP port.

But when a Zynq processor uses Xillybus with the PCIe bus, this problem occurs.
Several other embedded processors are also affected, in particular ARM processors.

5.10 Tuning of parameters

The parameters of the PCIe block in the demo bundles are chosen in order to support
the advertised data transfer rate. The performance is tested on a typical computer
with a CPU that belongs to the x86 family.

Also, the IP cores that are generated in the IP Core Factory usually don’t need any
fine-tuning: When “Autoset Internals” is enabled, the streams are likely to have the
optimal balance between performance and utilization of the FPGA’s resources. The
requested data transfer rate is hence ensured for each stream.

It is therefore almost always pointless to attempt fine-tuning the parameters of the
PCIe block or the IP core. With the default revision of IP cores (revision A) such
tuning is always pointless. If such tuning improves performance, it’s very likely that
the problem is a flaw in the application logic or in the user application software. In this
situation, there is much more to gain by correcting this flaw.

However, in rare scenarios that require exceptional performance, it might be neces-
sary to tune the PCIe block’s parameters slightly in order to attain the requested data
rates. This is relevant in particular for streams from the host to the FPGA. Section
4.5 of The guide to defining a custom Xillybus IP core discusses how to perform this
tuning.

Note that even when this fine-tuning is beneficial, it’s not the Xillybus IP core’s param-
eters that are modified. Only the PCIe block is adjusted. It’s a common mistake to
attempt improving the data transfer rate by tuning the IP core’s parameters. Rather,
the problem is almost always one of the issues that have been mentioned above in
this chapter.

Getting started with Xillybus on a Linux host 31

http://xillybus.com/
http://xillybus.com/downloads/doc/xillybus_custom_ip.pdf

Xillybus Ltd. www.xillybus.com

6
Troubleshooting

The drivers for Xillybus / XillyUSB were designed to produce meaningful log mes-
sages. These are a few alternatives for obtaining them:

• The output of the “dmesg” command.

• The output of the “journalctl -k” command.

• In the log file. This depends on the operating system, for example /var/log/syslog
or /var/log/messages.

It’s recommended to search for messages that contain the word “xillybus” or “xillyusb”
when something appears to be wrong. It’s also advisable to occasionally examine the
system log even when everything appears to work fine.

A list of messages from the PCIe / AXI driver and their explanation can be found at:

http://xillybus.com/doc/list-of-kernel-messages

It may however be easier to find a specific message by using Google on the message’s
text.

Getting started with Xillybus on a Linux host 32

http://xillybus.com/
http://xillybus.com/doc/list-of-kernel-messages

Xillybus Ltd. www.xillybus.com

A
A short survival guide to Linux command line

People who are not used to the command line interface may find it difficult to get things
done on a Linux computer. The basic command-line interface has been the same for
more than 30 years. Hence there are plenty of online tutorials about how to use each
and every command. This short guide is only a starter.

A.1 Some keystrokes

This is a summary of the most commonly used keystrokes.

• CTRL-C: Stop the currently running program

• CTRL-D: Finish this session (close the terminal window)

• CTRL-L: Clear screen

• TAB : At command prompt, attempt an autocomplete on what is already written.
This is useful with e.g. long file names: Type the beginning of the name, and
then [TAB].

• Up and down arrows: At command prompt, suggests previous commands from
the history. This is useful for repeating something just done. Editing of previous
commands is possible as well, so it’s also good for doing almost the same as a
previous command.

• space: When computer displays something with a terminal pager, [space] means
“page down”.

• q: “Quit”. In page-by-page display, “q” is used to quit this mode.

Getting started with Xillybus on a Linux host 33

http://xillybus.com/

Xillybus Ltd. www.xillybus.com

A.2 Getting help

Nobody really remembers all the flags and options. There are two common ways to
get some more help. One way is the “man” command, and the second way is the help
flag.

For example, in order to know more about the “ls” command (list files in current direc-
tory):

$ man ls

Note that the ’$’ sign is the command prompt, which the computer prints out to say it’s
ready for a command. Usually the prompt is longer, and it includes some information
about the user and the current directory.

The manual page is shown with a terminal pager. Use [space], arrow keys, Page Up
and Page Down to navigate, and ’q’ to quit.

For a short summary about how to run the command, use the --help flag. Some
commands respond to -h or -help (with a single dash). Other commands print the
help information when the syntax is incorrect. It’s a matter of trial and error. For the ls
command:

$ ls --help

Usage: ls [OPTION]... [FILE]...

List information about the FILEs (the current directory by default).

Sort entries alphabetically if none of -cftuvSUX nor --sort.

Mandatory arguments to long options are mandatory for short options too.

-a, --all do not ignore entries starting with .

-A, --almost-all do not list implied . and ..

--author with -l, print the author of each file

...

(and it goes on)

A.3 Showing and editing files

If the file is expected to be short (or if it’s OK to use the terminal window’s scrollbar),
displaying its content on the console can be done with:

$ cat filename

Getting started with Xillybus on a Linux host 34

http://xillybus.com/

Xillybus Ltd. www.xillybus.com

Longer files require a terminal pager:

$ less filename

As for editing text files, there are a lot of editors to choose from. The most popular
(but not necessarily the easiest to start off with) are emacs (and XEmacs) as well as
vi. The vi editor is difficult to learn, but it’s always available and always works.

The recommended simple GUI editor is gedit, or xed, whichever is available. It can be
started through the desktop menus or from the command line:

$ gedit filename &

The ’&’ at the end means that the command should be executed “in the background”.
Or simply put, the next command prompt appears before the command has com-
pleted. GUI applications are best started like this.

The ’filename’ in these examples can be a path as well, of course. For example, to
view the system’s main log file:

less /var/log/syslog

To jump to the end of the file, press shift-G, while “less” is running.

Note that the log files are accessible only by the root user on some computers.

A.4 The root user

All Linux computers have a user with the name “root” which has ID 0. This user is also
known as the superuser. The special thing about this user is that it’s allowed to do
everything. Every other user has limitations on accessing files and resources. Not all
operations are allowed for every user. These limitations are not imposed on the root
user.

This is not just an issue of privacy on a multi-user computer. Being allowed to do
everything includes deleting all data on the hard disk with simple command at shell
prompt. It includes several other ways to mistakenly delete data, make the computer
useless in general, or make the system vulnerable to attacks. The basic assumption
in a Linux system is that whoever is the root user, knows what he or she is doing. The
computer doesn’t ask root are-you-sure questions.

Working as root is necessary for system maintenance, including software installation.
The trick to not messing things up is thinking before pressing ENTER, and being

Getting started with Xillybus on a Linux host 35

http://xillybus.com/

Xillybus Ltd. www.xillybus.com

sure the command was typed exactly as required. Following installation instructions
exactly is usually safe. Don’t make any modifications without understanding what
they’re doing exactly. If the same command can be repeated as a user that isn’t root
(possibly involving other files), try it out to see what happens as that user.

Because of the dangers of being root, the common way to run a command as root is
with the sudo command. For example, view the main log file:

$ sudo less /var/log/syslog

This doesn’t always work, because the system needs to be configured to allow the
user to use “sudo”. The system requires the user’s password (not the root password).

The second method is to type “su” and start a session in which every command is
given as root. This is convenient when several tasks need to be done as root, but it
also means there is a bigger chance of forgetting being root, and write the wrong thing
without thinking. Keep root sessions short.

$ su

Password:

less /var/log/syslog

This time, the root password is required.

The change in the shell prompt indicates the change of identity from a regular user to
root. In case of doubt, type “whoami” to obtain your current user name.

On some systems, sudo works for the relevant user, but it may still be desired to
invoke a session as root. If “su” can’t be used (mainly because the root password isn’t
known) the simple alternative is:

$ sudo su

#

A.5 Selected commands

And finally, here are a few commonly used Linux commands.

A few file manipulation commands (it’s possibly better to use GUI tools for this):

• cp – Copy file or files.

• rm – Remove file or files.

Getting started with Xillybus on a Linux host 36

http://xillybus.com/

Xillybus Ltd. www.xillybus.com

• mv – Move file or files.

• rmdir – Remove directory.

And some which are recommended to know in general:

• ls – List all files in the current directory (or another directory, when specified). “ls
-l” lists the files with their attributes.

• lspci – List all PCI (and PCIe) devices on the bus. Useful for checking if Xillybus
has been detected as a PCIe peripheral. Also try lspci -v, lspci -vv and lspci -n.

• lsusb – List all USB devices on the bus. Useful for checking if XillyUSB has been
detected as a peripheral. Also try lsusb -v and lsusb -vv.

• cd – Change directory

• pwd – Show current directory

• cat – Send the file (or files) to standard output. Or use standard input, if no
argument is given. The original purpose of this command was to concatenate
files, but it ended up as the Swiss knife for plain input and output from and to
files.

• man – Show the manual page of a command. Also try “man -a” (sometimes
there’s more than one manual page for a command).

• less – terminal pager. Shows a file or data from standard input page by page.
See above. Also used to display a long output of a command. For example:

$ ls -l | less

• head – Show the beginning of a file

• tail – Show the end of a file. Or even better, with the -f flag: show the end + new
lines as they arrive. Good for log files, for example (as root):

tail -f /var/log/syslog

• diff – compare two text files. If it says nothing, files are identical.

• cmp – compare two binary files. If it says nothing, files are identical.

Getting started with Xillybus on a Linux host 37

http://xillybus.com/

Xillybus Ltd. www.xillybus.com

• hexdump – Show the content of a file in a neat format. Flags -v and -C are
preferred.

• df – Show the mounted disks and how much space there is left in each. Even
better, “df -h”

• make – Attempt to build (run a compilation of) a project, following the rules in
the Makefile

• gcc – The GNU C compiler.

• ps – Get a list of running processes. “ps a”, “ps au” and “ps aux” will supply
different amounts of information.

And a couple of advanced commands:

• grep – Search for a textual pattern in a file or standard input. The pattern is
a regular expression, but if it’s just text, then it searches for the string. For
example, search for the word “xillybus”, as a case insensitive string, in the main
log file, and show the output page after page:

grep -i xillybus /var/log/syslog | less

• find – Find a file. It has a complicated argument syntax, but it can find files
depending on their name, age, type or anything you can think of. See the man
page.

Getting started with Xillybus on a Linux host 38

http://xillybus.com/

	Introduction
	Installing the host driver
	Stages for installing Xillybus' driver
	Do you really need to install anything?
	General
	Linux distributions with pre-installed driver
	Linux kernels that include Xillybus' driver

	Checking for prerequisites
	Uncompressing the downloaded file
	Running the compilation of the kernel module
	Installing the kernel module
	Copying the udev rule file
	Loading and unloading the module
	Xillybus drivers in the official Linux kernel

	The ``Hello, world'' test
	The goal
	Preparations
	The trivial loopback test

	Example host applications
	General
	Editing and compilation
	Running the programs
	Memory interface

	Guidelines for high bandwidth performance
	Don't loopback
	Don't involve the disk or other storage
	Read and write large portions
	Pay attention to the CPU consumption
	Don't make reads and writes mutually dependent
	Know the limits of the host's RAM
	DMA buffers that are large enough
	Use the correct width for the data word
	Slowdown due to cache synchronization
	Tuning of parameters

	Troubleshooting
	A short survival guide to Linux command line
	Some keystrokes
	Getting help
	Showing and editing files
	The root user
	Selected commands

