
Getting started with the FPGA demo bundle for Intel FPGA

Xillybus Ltd.

www.xillybus.com

Version 3.1

1 Introduction 3

2 Prerequisites 5

2.1 Hardware . 5

2.2 FPGA project . 6

2.3 Development software . 6

2.4 Experience with FPGA design . 7

3 The implementation of the demo bundle 8

3.1 Overview . 8

3.2 File outline . 9

3.3 Building the demo bundle . 9

3.3.1 Opening the project . 9

3.3.2 Building the PCIe block (Arria II and series-IV FPGAs) 10

3.3.3 Compilation of the design files 14

3.4 Programming the FPGA . 15

4 Modifications 16

4.1 Integration with custom logic . 16

4.2 Making changes in Intel’s PCIe IP / Megafunction 17

http://xillybus.com/

Xillybus Ltd. www.xillybus.com

4.3 Inclusion in a custom project . 17

4.4 Using other boards . 19

4.4.1 General . 19

4.4.2 Device family . 19

4.4.3 Pin placements . 19

4.4.4 PCIe only: Clocking . 19

4.4.5 Working with XillyUSB . 21

5 Troubleshooting 22

5.1 Errors during implementation . 22

5.2 PCIe Hardware problems . 22

Getting started with the FPGA demo bundle for Intel FPGA 2

http://xillybus.com/

Xillybus Ltd. www.xillybus.com

1
Introduction

Xillybus is a DMA-based end-to-end solution for data transport between an FPGA and
a host that runs Linux or Microsoft Windows. It offers a simple and intuitive interface
to the designer of the FPGA logic as well as the programmer of the software.

Application
FIFO

full

wr_en

data

Xillybus
IP core

Application
FIFO

empty

rd_en

data

Altera’s
PCIe

interface
IP core

(IP Compiler
for

PCI Express)

PCIe busto application
logic

As shown above, the application logic on the FPGA only needs to interact with stan-
dard FIFOs.

For example, writing data to the lower FIFO in the diagram makes the Xillybus IP core
sense that data is available for transmission in the FIFO’s other end. Soon, the IP
core reads the data from the FIFO and sends it to the host, making it readable by the
userspace software. The data transport mechanism is transparent to the application
logic in the FPGA, which merely interacts with the FIFO.

On its other side, the Xillybus IP core implements the data flow utilizing PCI Express’
Transport Layer level, generating and receiving TLP packets. For the lower layers, it
relies on Intel’s official PCIe core, which is part of the development tools, and requires
no additional license (even when using the Web / Lite Edition of Quartus).

Getting started with the FPGA demo bundle for Intel FPGA 3

http://xillybus.com/

Xillybus Ltd. www.xillybus.com

The application on the computer interacts with device files that behave like named
pipes. The Xillybus IP core and driver transport data efficiently and intuitively between
the FIFOs in the FPGAs and their related device files on the host.

With XillyUSB, an MGT transceiver is used to implement an USB 3.0 interface, which
is used for data transport instead of the PCIe interface mentioned above.

The IP core is built instantly per customer’s spec, using an online web application.
The number of streams, their direction and other attributes are defined by customer
to achieve an optimal balance between bandwidth performance, synchronization, and
simplicity of design. After going through the preparation steps with the demo bundle,
as described in this guide, it’s recommended to build and download your custom IP
core at http://xillybus.com/custom-ip-factory.

This guide explains how to rapidly set up the FPGA with a Xillybus IP core, which can
be attached to user-supplied data sources and data consumers, for real application
scenario testing. The IP core is included in a demo bundle, which can be downloaded
at the website.

Despite its name, the demo bundle is not a demonstration kit, but a fully functional
starter design, which can perform useful tasks as is.

For those who are curious, a brief explanation on how Xillybus is implemented can be
found in Appendix A of either Xillybus host application programming guide for Linux or
Xillybus host application programming guide for Windows.

Getting started with the FPGA demo bundle for Intel FPGA 4

http://xillybus.com/
http://xillybus.com/custom-ip-factory
http://xillybus.com/downloads/doc/xillybus_host_programming_guide_linux.pdf
http://xillybus.com/downloads/doc/xillybus_host_programming_guide_windows.pdf

Xillybus Ltd. www.xillybus.com

2
Prerequisites

2.1 Hardware

Xillybus relies on the Intel’s hardware IP block for PCI Express, and is hence avail-
able for any Intel FPGA device having this component. Among the FPGA families
supported:

• Arria II GX/GZ

• Cyclone IV GX

• HardCopy IV GX

• Stratix IV GX

• Arria V GX/GT/SX/ST

• Cyclone V GX/GT/SX/ST

• Stratix V GS/GX/GT

• Arria 10 GX/GT/SX

• Cyclone 10 GX

• Stratix 10 with H-tile or L-tile

XillyUSB is supported only with Cyclone 10 GX (the LP family is not supported).

The Xillybus FPGA demo bundle is packaged to work with several boards and devices,
as listed on the download pages (see section 2.2 below).

Getting started with the FPGA demo bundle for Intel FPGA 5

http://xillybus.com/

Xillybus Ltd. www.xillybus.com

Owners of other boards may run a demo bundle on their own hardware after making
the necessary changes in pin placements and verifying that the MGT’s reference clock
is handled properly. This should be straightforward to any fairly experienced FPGA
engineer. More about this in section 4.4.

2.2 FPGA project

The Xillybus demo bundle is available for download at Xillybus site’s download pages.
For the PCIe-based cores:

http://xillybus.com/pcie-download

And for XillyUSB:

http://xillybus.com/usb-download

The demo bundle includes a specific configuration of the Xillybus IP core, which is
intended for simple tests. Therefore, it has a relatively poor performance for certain
applications.

Custom IP cores can be configured, automatically built and downloaded using the
IP Core Factory web application. Please visit http://xillybus.com/custom-ip-factory for
using this tool.

Any downloaded bundle, including the Xillybus IP core, is free for use, as long as this
use reasonably matches the term “evaluation”. This includes incorporating the core in
end-user designs, running real-life data and field testing. There is no limitation on how
the core is used, as long as the sole purpose of this use is to evaluate its capabilities
and fitness for a certain application.

2.3 Development software

The recommended tool for the implementation of Xillybus’ demo bundle (as well as
other designs involving Xillybus) is listed below, depending on the FPGA’s family.

Xillybus for PCIe:

• For FPGAs of series-IV and Arria II: Quartus 12.0 and later.

• For Arria 10 and Cyclone 10: Quartus Prime 17.1 and later. Both the Standard
and Pro editions are supported.

• For Stratix 10: Quartus Pro 19.2 and later.

Getting started with the FPGA demo bundle for Intel FPGA 6

http://xillybus.com/
http://xillybus.com/pcie-download
http://xillybus.com/usb-download
http://xillybus.com/custom-ip-factory

Xillybus Ltd. www.xillybus.com

• All other FPGA families: Quartus II, version 15.0 and later.

XillyUSB:

• For Cyclone 10: Quartus Pro 17.1 and later should be used.

This software can be downloaded directly from Intel’s website (https://www.intel.com).

Note that Web / Lite Editions of Quartus, which are available at no cost, support
several FPGA families, in particular Cyclone devices.

The implementation of Xillybus relies on some IP cores that are supplied by Quartus.
All editions of Quartus cover these IP cores, without any need for additional licensing.

2.4 Experience with FPGA design

When the design is intended for a board that appears in the list of demo bundles, no
previous experience with FPGA design is necessary to have the demo bundle working
on the FPGA. When other boards are used, it’s required to have some knowledge with
using Intel FPGA’s tools, in particular defining pin placements and clocks.

To make the most of the demo bundle, a good understanding of logic design tech-
niques, as well as mastering an HDL language (Verilog or VHDL) are necessary.
Nevertheless, the Xillybus demo bundle is a good starting point for learning these, as
it presents a simple starter design to experiment with.

Getting started with the FPGA demo bundle for Intel FPGA 7

http://xillybus.com/
https://www.intel.com

Xillybus Ltd. www.xillybus.com

3
The implementation of the demo bundle

3.1 Overview

There are three possible methods for the implementation of Xillybus’ demo bundle,
and obtaining a bit stream file (SOF):

• Using the project files in the bundle as they are. This is the simplest way, and is
suitable when working with boards that appear in the list of demo bundles.

• Modifying the files to match a different FPGA. This is suitable when working with
other boards, and/or other FPGAs. More information about this in paragraph
4.4.

• Setting up the Quartus projects from scratch. Possibly necessary when integrat-
ing the demo bundle with existing application logic. Further details in paragraph
4.3.

In the remainder of this section, the first work procedure is detailed, which is the
simplest and most commonly chosen one. The other two work procedures are based
upon the first one, with differences that are detailed in the paragraphs given above.

IMPORTANT:

The evaluation bundle is configured for simplicity rather than performance. Signif-
icantly better results can be achieved for applications requiring a sustained and
continuous data flow, in particular for high-bandwidth cases. For these scenarios,
a custom IP core is easily built and downloaded with the web application.

Getting started with the FPGA demo bundle for Intel FPGA 8

http://xillybus.com/

Xillybus Ltd. www.xillybus.com

3.2 File outline

The bundle consists of five directories:

• core – The Xillybus IP core is stored here

• instantiation templates – Contains the instantiation templates for the core (in
Verilog and VHDL)

• verilog – Contains the project file for the demo bundle and the sources in Verilog
(in the ’src’ subdirectory)

• vhdl – Contains the project file for the demo bundle and the sources in VHDL (in
the ’src’ subdirectory)

• pcie core (PCIe bundles only) – Intel’s PCIe IP core is built here before building
the rest of the bundle.

• quartus-essentials (XillyUSB bundles only) – Various files that are common to
the Verilog and VHDL projects.

Note that each demo bundle is intended for a specific board, as listed at the site’s
web page from which the demo bundle was downloaded. If another board is used,
or if certain configuration resistors have been added or removed from the board, the
constraints file must be edited accordingly.

Also note that the vhdl directory contains Verilog files, but none of these should need
significant changes.

The interface between Xillybus’ IP core and the application logic takes place in the
xillydemo.v file or xillydemo.vhd file (in the respective ’src’ subdirectories). This is the
file to edit in order to try Xillybus with your own data.

3.3 Building the demo bundle

3.3.1 Opening the project

Depending on your preference, double-click the ’xillydemo.qpf’ file in either the ’ver-
ilog’ or ’vhdl’ subdirectory. Quartus will launch and open the project with the correct
settings.

If a series-V (e.g. Cyclone V) or series-10 (e.g. Arria 10) FPGA is used, continue with
paragraph 3.3.3.

Otherwise, build the PCIe block as described next.

Getting started with the FPGA demo bundle for Intel FPGA 9

http://xillybus.com/

Xillybus Ltd. www.xillybus.com

3.3.2 Building the PCIe block (Arria II and series-IV FPGAs)

IMPORTANT:

Note that this paragraph does not relate to series-V FPGAs and later.

If a Quartus version later than 12.0 is used, the megafunction variation file needs
manual editing. Otherwise, the MegaWizard Plug-In Manager will refuse to accept
this file.

If editing is required, open the file in the pcie core/ directory (e.g. pcie core/pcie s4 4x.v)
with a text editor. Replace all the occurences of the older Quartus version with the
one used. Just change the version number (e.g. replace 12.0 with 15.0).

Typically, lines like or similar to the following need modification:

// megafunction wizard: %IP Compiler for PCI Express v12.0%

and

// Retrieval info: <MEGACORE title="IP Compiler for PCI Express" version="12.0"

and possibly also

// Generated using ACDS version 12.0 178

Launch the MegaWizard Plug-In Manager from within Quartus:

• Quartus 14 and later: Open a Command Prompt Window (or a terminal in
Linux). Make sure that Quartus’ utilities are in the execution path (typically
/some/path/quartus/bin/). Type “qmegawiz” to launch the MegaWizard Plug-In
Manager.

• Quartus 13 and earlier: In the Tools menu, pick MegaWizard Plug-In Manager.

The following (or similar) window should appear:

Getting started with the FPGA demo bundle for Intel FPGA 10

http://xillybus.com/

Xillybus Ltd. www.xillybus.com

Choose “Edit an existing custom megafunction variation”, and click Next.

Next, a window (not shown here) requests the custom megafunction variation file to
edit. Pick the pcie c4 1x.v (or similar) file in the pcie core directory (only one suitable
file will be present). Typically, navigating one directory up from the starting point
reveals the directory to enter.

After a notice saying “Loading MegaWizard...”, a window like this appears:

Getting started with the FPGA demo bundle for Intel FPGA 11

http://xillybus.com/

Xillybus Ltd. www.xillybus.com

If the Megawizard refuses to open the file, saying “Specify a valid MegaWizard-
generated variation file”, there are a few possibilities for this problem:

• You’re working with a recent FPGA (e.g. Cyclone V). In this case there’s no need
to build the PCIe block at all.

• The variation file wasn’t edited properly to change the Quartus revision number
to the current one. Please refer to the beginning of this section.

• If Megawizard rejects a file for being invalid, editing the file and attempting to
load it again will not help. The Megawizard program must be exited and invoked
again from the command prompt, or it will continue to reject the file, even if it
has been edited properly.

Getting started with the FPGA demo bundle for Intel FPGA 12

http://xillybus.com/

Xillybus Ltd. www.xillybus.com

The window that opens and the parameters it presents vary from one FPGA family to
another (in particular, a title different from “IP Compiler for PCI Express” is fine).

No changes should be made. Just click “Finish”. A window like the following shows
the progress (its final state is shown here):

Once finished, click Exit. The following window may appear immediately afterwards,
offering to add the Quartus IP (QIP) file to the project.

The preferred answer is “No”, since adding the QIP file to the project indirectly adds
an unnecessary SDC file, containing constraints which are all ignored anyhow. Even
though it’s harmless having this QIP file in the project, it causes a lot of warnings
during the compilation, typically two warnings for each ignored constraint in the SDC
file.

Getting started with the FPGA demo bundle for Intel FPGA 13

http://xillybus.com/

Xillybus Ltd. www.xillybus.com

3.3.3 Compilation of the design files

In Quartus’ main window, click “Compile Design” to create the FPGA bitstream file.
Note that on some Quartus revisions, the default procedure for compilation may be
set to “Rapid Recompile”, which allows only “Rapid Recompile” in the task pane. If
this is the case, change it to “Compilation”, and proceed.

The process produces 20-50 warnings (depending on whether the QIP file was in-
cluded in the project), but should end with a dialog box saying “Full Compilation was
successful”.

It’s mandatory to verify that no errors nor Critical Warnings were generated (the tabs

Getting started with the FPGA demo bundle for Intel FPGA 14

http://xillybus.com/

Xillybus Ltd. www.xillybus.com

at the bottom of the main Quartus window indicate the number of messages for each
type).

At the end of the process, the programming file can be found as xillydemo.sof.

3.4 Programming the FPGA

In early development stages, it’s recommended to load the FPGA via JTAG. This is
usually done with an USB Blaster / Intel FPGA Download Cable (on-board or external).
Please refer to your board’s instructions on how to load the FPGA via JTAG.

For XillyUSB projects, the FPGA can be loaded and reloaded at any time, even while
the USB interface is connected to a working computer.

With PCIe projects, the FPGA must be loaded with the bitfile before the computer is
powered up: The computer expects the PCIe peripheral to be in a proper state when
it powers up, and may not tolerate any surprises afterwards.

Therefore, do not reload the FPGA as long as the host is running. Even though
the PCIe specification requires support for hotplugging, motherboards don’t normally
expect a PCIe card to disappear and then reappear. Accordingly, some motherboards
may not respond correctly. Nevertheless, reloading of the FPGA, while the operating
system is running, works on some motherboards.

Xillybus’ driver is designed to respond sanely to hotplugging, however there is nothing
to assure the computer’s general stability. This is dicussed on this page:

http://xillybus.com/doc/hot-reconfiguration

If the FPGA powers up and is loaded from a flash memory along with powering up
the computer, it’s essential to ensure that the FPGA is loaded quickly enough, so the
PCIe device is present when the BIOS scans the bus.

Getting started with the FPGA demo bundle for Intel FPGA 15

http://xillybus.com/
http://xillybus.com/doc/hot-reconfiguration

Xillybus Ltd. www.xillybus.com

4
Modifications

4.1 Integration with custom logic

The Xillybus demo bundle is constructed for easy integration with application logic.
The place for connecting data is the xillydemo.v or xillydemo.vhd file (depending on
the preferred language). All other HDL files in the bundle can be ignored for the
purpose of using the Xillybus IP core for transporting data between the host (Linux or
Windows) and the FPGA.

Additional HDL files with custom logic designs may be added to the project that was
prepared as described in paragraph 3.3, and then rebuilt by clicking “Compile De-
sign”. There is no need to repeat the other steps of the initial deployment, so the
development cycle for logic is fairly quick and simple.

When attaching the Xillybus IP core to custom application logic, it is warmly recom-
mended to interact with the Xillybus IP core only through FIFOs, and not attempt to
mimic their behavior with logic, at least not in the first stage.

An exception for this is when connecting memories or register arrays to Xillybus, in
which case the example that is shown in the xillydemo module should be followed.

In the xillydemo module, FIFOs are used to perform a data loopback. In other words,
the data that arrives from the host is sent back to it. Both of the FIFO’s sides are
connected to the Xillybus IP core, so the core is both the source of the data and the
consumer of the data.

In a real-life usage scenario, only one of the FIFO’s sides is connected to the Xillybus
IP core. The FIFO’s other side is connected to application logic, which supplies or
consumes data.

The FIFOs that are used in the xillydemo module work with only one common clock

Getting started with the FPGA demo bundle for Intel FPGA 16

http://xillybus.com/

Xillybus Ltd. www.xillybus.com

for both sides (scfifo), as both sides are driven by Xillybus’ main clock. In a real-life
application, it may be desirable to replace them with FIFOs that have separate clocks
for reading and writing. This allows driving the data sources and data consumers with
a clock other than bus clk. By doing this, the FIFOs serve not just as mediators, but
also for proper clock domain crossing.

Note that the Xillybus IP core expects a plain FIFO interface, (as opposed to “show-
ahead”) for streams from the FPGA to the host.

The following documents are related to integrating custom logic:

• The API for logic design: Xillybus FPGA designer’s guide

• Getting started with Xillybus on a Linux host

• Getting started with Xillybus on a Windows host

• Xillybus host application programming guide for Linux

• Xillybus host application programming guide for Windows

• The guide to defining a custom Xillybus IP core

4.2 Making changes in Intel’s PCIe IP / Megafunction

Unless absolutely necessary, changes in the configuration of the Intel IP compiler for
PCI Express Megafunction should not be made.

In particular, there is a high senstivity to the allocation of receive buffers. The Xillybus
IP core relies upon the sizes of those buffers according to the numbers that are given
by the IP Compiler / MegaWizard in the demo bundle. If the PCIe core allocates less
buffer space than expected by the Xillybus IP core, sporadic data errors may occur in
the communication from the host to FPGA. This can also cause a complete stall of the
communication in this direction. Such problem would be the result of packets arriving
to the FPGA that cause an overflow of these buffers.

If any change is needed in the IP / Megafunction, please seek assistance through the
email address published at Xillybus’ web site.

4.3 Inclusion in a custom project

If desired, it’s possible to include the Xillybus IP core in an existing Quartus project, or
create a new project from scratch. This section relates to Xillybus for PCIe, however
a similar procedure applies for XillyUSB.

Getting started with the FPGA demo bundle for Intel FPGA 17

http://xillybus.com/
http://xillybus.com/downloads/doc/xillybus_fpga_api.pdf
http://xillybus.com/downloads/doc/xillybus_getting_started_linux.pdf
http://xillybus.com/downloads/doc/xillybus_getting_started_windows.pdf
http://xillybus.com/downloads/doc/xillybus_host_programming_guide_linux.pdf
http://xillybus.com/downloads/doc/xillybus_host_programming_guide_windows.pdf
http://xillybus.com/downloads/doc/xillybus_custom_ip.pdf

Xillybus Ltd. www.xillybus.com

If the project doesn’t exist already, start a new project, and set it up as based upon
your preferred HDL language and intended FPGA.

To include the Xillybus IP core in the project:

• Copy the pcie c4 1x.v file (or alike) from the pcie core/ subdirectory to a direc-
tory related to the project.

• For Cyclone V, Arria V, Stratix V, and series-10 FPGAs, also copy pcie core/pcie reconfig.qsys
(or pcie core/pcie ip.ip) into the same directory.

• Follow the procedure that is outlined in 3.3.2 if the chosen FPGA requires that,
in order to build Intel’s PCIe block.

• These files should be added (possibly a copy of them) for Cyclone IV:

– pcie c4 1x.v

– pcie c4 1x core.v

– pcie c4 1x serdes.v

– pcie c4 1x examples/chaining dma/pcie c4 1x rs hip.v

– ip compiler for pci express-library/altpcie hip pipen1b.v

– ip compiler for pci express-library/altpcie reconfig 3cgx.v

– ip compiler for pci express-library/altpcie rs serdes.v

For Stratix IV and Arria II, these files should be added:

– pcie s4 4x.v

– pcie s4 4x core.v

– pcie s4 4x serdes.v

– pcie s4 4x examples/chaining dma/pcie s4 4x rs hip.v

– ip compiler for pci express-library/altpcie hip pipen1b.v

– ip compiler for pci express-library/altpcie reconfig 4sgx.v

– ip compiler for pci express-library/altpcie rs serdes.v

For series-V FPGAs, there is no need to copy similar files, as they are generated
and included by Qsys.

• Copy the two HDL files, xillybus.v and xillydemo.v(hd), in one of the two src/
subdirectories (depending on your language preference) and add them to the
project.

Getting started with the FPGA demo bundle for Intel FPGA 18

http://xillybus.com/

Xillybus Ltd. www.xillybus.com

• Adopt the constraints in the SDC file in either of the src/ directories (they may
need slight modifications to match names of top level signals in the project).

• Copy xillybus core.qxp or xillybus core.vqm from the core/ directory and add this
file to the project as well.

• If the xillydemo module isn’t the top level module of the projects, connect its
ports to the top level.

• To attach the Xillybus IP core to custom application logic, edit the xillydemo
module, replacing the existing application logic with the desired one.

4.4 Using other boards

4.4.1 General

When working with a board which doesn’t appear in the list of demo bundles, some
slight modifications in the bundle are necessary.

4.4.2 Device family

The demo bundle includes a QXP or VQM file, which is a synthesized file for a certain
device family. It can be used with any device within this family.

4.4.3 Pin placements

Most purchased boards have their own example of an FPGA design, which shows how
the PCIe interface is used on that board. It’s often easiest to locate the relevant pin
assignments in the intended board’s QSF file, and modify the pins’ names to those that
are used in Xillybus’ QSF file. Having done this, it’s possible to replace the relevant
rows in the QSF file that is used in Xillybus’ project.

There are also four user led wires, which have no functional significance. But if there
are vacant LEDs on the board, it’s recommended to connect them, as they supply
some indications on the communication status. The user led signal assumes active
low logic (a logic ’0’ means LED is on).

4.4.4 PCIe only: Clocking

The xillydemo module requires some or all of these three clocks as inputs. The clocks
that are needed are those that are inputs to the xillydemo module.

Getting started with the FPGA demo bundle for Intel FPGA 19

http://xillybus.com/

Xillybus Ltd. www.xillybus.com

• pcie refclk – Connected directly to the reference clock that is supplied by the
host’s motherboard. This clock should have a frequency of 100 MHz. This clock
may not be active when the host is powered off, and in other situations when
this is allowed by the PCIe specification. A clock cleaning circuit may be present
between the motherboard’s clock and the one that is connected to the FPGA, as
required by the FPGA.

If a different clock frequency is supplied to this input port (e.g. 125 MHz supplied
by a clock cleaner), it’s necessary to change the Xcvr ref clk parameter in the
IP Compiler for PCI Express settings accordingly. This is done when invoking
the relevant IP Compiler / MegaWizard plug-in manager, as shown in paragraph
3.3.

• clk 50 – Drives the gigabit transceiver’s reconfig clk, and must always be active.
Therefore it must not depend on the motherboard’s reference clock. The allowed
frequency range of this clock depends on the FPGA family (e.g. 37.5 MHz to 50
MHz on Cyclone IV). The specifications for this clock can be found by searching
for “reconfig clk” in the device handbook for the relevant FPGA.

• clk 125 – Drives the always-active clock that is required by the transceiver. The
frequency of this clock must be 125 MHz, and must not depend on the mother-
board’s reference clock.

IMPORTANT:

pcie refclk must not be driven by just some oscillator on the board. Any slight
frequency difference with the host’s clock leads to unreliable communication or
failure to detect the FPGA as a PCIe device.

In the demo bundle for Cyclone IV GX Transceiver Starter Board, the clk 50 and
clk 125 inputs are driven directly by I/O pins that are connected to clock sources of
50 MHz and 125 MHz respectively on the board. In the absence of suitable clocks
directly from the board, a PLL can be used to generate both, as described in section
7 of the IP Compiler for PCI Express User Guide, which is published by Intel.

When using a PLL, xillybus.v must be edited, connecting the reconfig clk locked signal
to the PLL’s lock indicator. This has already been done on the demo bundle for Stratix
IV, because the DE4 board doesn’t supply an always-active clock with a 125 MHz
frequency.

An example of using a PLL is available among the files in the pcie core subdirec-
tory, after the PCI Compiler for PCI Express files are generated. This can be found

Getting started with the FPGA demo bundle for Intel FPGA 20

http://xillybus.com/

Xillybus Ltd. www.xillybus.com

as pcie c4 1x example chaining pipen1b.v in the pcie c4 1x examples/chaining dma
directory (or similar files when working with a family other than Cyclone IV).

4.4.5 Working with XillyUSB

XillyUSB can be used on other boards that have an SFP+ interface. In this case it’s
just a matter of setting the design’s constraints to use the MGT that is wired to the
SFP+ connector.

The board should also supply a 125 MHz reference clock with low jitter for the MGT.
Despite the requirement in the USB specification, Spread Spectrum Clocking (SSC)
should not be enabled (if such option exists): The MGT doesn’t lock properly on the
received signal if an SSC reference clock is used.

For custom boards, it’s recommended to refer to the sfp2usb module’s schematics, as
the pins of the SFP+ connector are connected directly to the FPGA’s MGT. It is op-
tional to swap the SSRX wires, as done on the sfp2usb module. This is recommended
only if it simplifies the PCB design.

Swapping the SSTX wires is also possible, if desired. This requires editing the * frontend.v
file so that the polarity of the transmitted bits is reversed, and hence compensates for
the wire pair swap. Note that there’s a good chance that the USB connection will
operate properly even without this edit, since the USB specification requires the link
partners to work properly even with a polarity swap. It’s however recommended to not
rely on this.

Getting started with the FPGA demo bundle for Intel FPGA 21

http://xillybus.com/

Xillybus Ltd. www.xillybus.com

5
Troubleshooting

5.1 Errors during implementation

Sometimes there are slight differences between releases of Intel’s tools. This can
result in failures to run the implementation for creating a SOF file.

If the problem isn’t solved fairly quickly, please seek assistance through the email
address that is given at Xillybus’ web site. Please attach the output log of the process
that failed, in particular around the first error that is reported by the tool. Also, if custom
changes were made in the design (i.e. diversion from the demo bundle) please detail
these changes. Also please state which version of the Quartus tools was used.

5.2 PCIe Hardware problems

Normally, the PCIe card is detected properly by the host’s BIOS and/or operating
system, and the host’s driver launches successfully.

On most PC computers, the BIOS briefly displays a list of detected peripherals early
in the boot process. When the Xillybus interface is detected successfully, a peripheral
with vendor ID 1172 and device ID EBEB appears on the list.

As for the operating system’s detection of the card, please refer to one of these two
documents, whichever applies:

• Getting started with Xillybus on a Linux host

• Getting started with Xillybus on a Windows host

The failure to detect the card (or a failure in the computer’s boot process) is not related
to the Xillybus IP core, which relies on Intel’s PCIe IP core for interfacing with the bus.

Getting started with the FPGA demo bundle for Intel FPGA 22

http://xillybus.com/
http://xillybus.com/downloads/doc/xillybus_getting_started_linux.pdf
http://xillybus.com/downloads/doc/xillybus_getting_started_windows.pdf

Xillybus Ltd. www.xillybus.com

At first, it’s recommended to verify the following:

• The bitstream was already loaded into the FPGA when the computer was pow-
ered on (or soon enough after it was powered on, in terms of the PCI-SIG spec-
ification).

• The pinouts of the PCIe wires, including the reference clock are correct (this can
be verified in the fitter’s report).

• The board supplies the correct reference clock to the FPGA.

If the problem isn’t spotted immediately, it’s recommended to attempt the sample
project for PCIe that came with the board. This may reveal wrong jumper settings
and possibly defective hardware.

If the card is detected with this sample, but not with Xillybus, it may be helpful to
compare the pinouts of the two designs. If they are equal, the next step is comparing
the attributes of Intel’s PCIe cores, by invoking the relevant GUI tool with each.

The following configuration elements may need adjustment:

• The frequency of the reference clock.

• The base class and sub class (not likely, but some relatively old PC computers
have failed the boot process if the class was considered unknown).

• Any other attribute that is configured differently, except for the base address
register settings, vendor ID, device ID and interrupt settings, which should not
be altered.

If the problem remains, please seek assistance through the email address that is given
at Xillybus’ web site.

Getting started with the FPGA demo bundle for Intel FPGA 23

http://xillybus.com/

	Introduction
	Prerequisites
	Hardware
	FPGA project
	Development software
	Experience with FPGA design

	The implementation of the demo bundle
	Overview
	File outline
	Building the demo bundle
	Opening the project
	Building the PCIe block (Arria II and series-IV FPGAs)
	Compilation of the design files

	Programming the FPGA

	Modifications
	Integration with custom logic
	Making changes in Intel's PCIe IP / Megafunction
	Inclusion in a custom project
	Using other boards
	General
	Device family
	Pin placements
	PCIe only: Clocking
	Working with XillyUSB

	Troubleshooting
	Errors during implementation
	PCIe Hardware problems

