
The guide to Xillybus Block Design Flow for non-HDL users
(deprecated)

Xillybus Ltd.

www.xillybus.com

Version 3.2

The Block Design Flow is not available anymore.

This document is intended to support existing projects only.

http://xillybus.com/

Xillybus Ltd. www.xillybus.com

1 Introduction 3

2 General guidelines 5

2.1 Getting started . 5

2.2 Notable elements in the block design . 6

3 Integrating with application logic 9

3.1 The basics . 9

3.2 Clocking . 10

3.2.1 General . 10

3.2.2 Setting the application clock . 10

3.2.3 The bus clk signal . 11

4 Acceleration / coprocessing best practices 12

4.1 Throughput vs. latency . 12

4.2 Data width and performance . 13

4.3 Do’s and don’ts . 13

5 Applying a custom Xillybus IP core 15

6 Vivado HLS integration 18

6.1 Overview . 18

6.2 HLS synthesis . 19

6.3 Integration with the FPGA project . 19

6.4 The example synthesis code . 21

6.5 Modifications on the C/C++ code for synthesis 24

6.6 simple.c: An example of a host program 25

6.7 practical.c: A practical host program . 28

6.8 Design considerations . 34

6.8.1 Working with multiple AXI streams 34

6.8.2 The application clock’s frequency 35

6.8.3 Resetting the logic . 36

The guide to Xillybus Block Design Flow for non-HDL users (deprecated) 2

http://xillybus.com/

Xillybus Ltd. www.xillybus.com

1
Introduction

The Xillybus Block Design Flow is an alternative to the Verilog / VHDL design flow,
and is intended for those not comfortable with modifying and designing with logic-
related HDL languages. Its primary purpose is to allow designers with no FPGA
background an access to coprocessing / acceleration capabilities without the need
to acquire FPGA-related skills. Among others, it’s intended as a simple means to
exchange data between logic generated by Xilinx’ Vivado High Level Synthesis (HLS)
and a computer or embedded platform running Linux or Microsoft Windows.

The Block Design Flow diverts from Xillybus’ main concept of communicating with
the Xillybus IP core through FPGA FIFOs. Instead, user application logic connects
directly to the Xillybus IP block through AXI Stream interfaces. This simplifies the
work considerably, but requires awareness of the difference, in particular that when
Xillybus’ documentation mentions FIFOs in the FPGA, this is irrelevant to the Block
Design Flow: Instead of each FIFO, there is simple wire in the Block Design’s GUI.

Xillybus’ Block Design Flow should not be confused with the block design diagrams
used for setting up a Zynq processor environment or otherwise connecting between
logic blocks: Such block designs, if applied, are unrelated, and may coexist regardless
of the method chosen for connecting Xillybus’ IP core with application logic.

Xillybus allows the designer to focus on productive, application related work by:

• Supplying a working starter project, which is ready for compilation into FPGA bit-
stream as is. This project sets up a simple and intuitive data exchange between
the FPGA and the computer host by virtue of Xillybus’ IP core,

• supplying a sample High Level Synthesis (HLS) project for demonstrating logic
design with C/C++, with the key elements explained in this guide (see section
6),

The guide to Xillybus Block Design Flow for non-HDL users (deprecated) 3

http://xillybus.com/

Xillybus Ltd. www.xillybus.com

• allowing a very simple integration of IP blocks into the FPGA design, using Vi-
vado’s block design tool

• supplying drivers for Linux and Windows that offer a simple programming inter-
face on the host,

• offering a web tool which automatically creates custom Xillybus IP cores con-
sisting of data streams that are configured specifically for a given project.

As the Block Design Flow relies on the block design tool of Xilinx’ Vivado, it’s limited to
the FPGAs covered by this tool. Hence only Xilinx’ series-7 FPGAs and later (including
Ultrascale devices) are supported.

Despite the ease of use of the Block Design Flow, it gives access only to a subset
of Xillybus’ features, and is therefore not recommended for those familiar with FPGA
design based upon Verilog or VHDL. However for certain applications, e.g. IP core
or HLS-based hardware acceleration / coprocessing, the impact of the difference in
Xillybus’ features is negligible.

The Block Design Flow is not supported by XillyUSB.

The guide to Xillybus Block Design Flow for non-HDL users (deprecated) 4

http://xillybus.com/

Xillybus Ltd. www.xillybus.com

2
General guidelines

2.1 Getting started

In principle, setting up a project for the Block Design Flow is as described in the
respective Getting Started guide for the intended platform, using Vivado:

• For Xillinux bundles: Getting started with Xillinux for Zynq-7000

• For PCIe bundles: Getting started with the FPGA demo bundle for Xilinx

When following these guides, be sure to use the xillydemo-vivado.tcl script in the
blockdesign/ subdirectory.

IMPORTANT:

This guide does not go along with the tutorial named “FPGA coprocessing for
C/C++ programmers” on Xillybus’ website. There are several differences in tech-
nical details as well as the example projects presented. In order to avoid confu-
sion, it’s advised to stick to either this guide (for Block Design Flow) or the website
tutorial (for Verilog / VHDL design).

Generating and using the bitfile are done the same as in the Getting Started guides
mentioned above: A bitfile can be generated immediately from the bundle “out of
the box”, and the loopback tests described in these guides work the same. However
please note that the seekable stream xillybus mem 8 doesn’t work in the Block Design
Flow, as explained in section 4.3.

The Block Design Flow is different in that interfacing with Xillybus’ IP core takes place
in Vivado’s block design tool: After generating the project, open the block design by
choosing “Open Block Design” in Vivado’s left menu bar.

The guide to Xillybus Block Design Flow for non-HDL users (deprecated) 5

http://xillybus.com/
http://xillybus.com/downloads/doc/xillybus_getting_started_zynq.pdf
http://xillybus.com/downloads/doc/xillybus_getting_started_xilinx.pdf

Xillybus Ltd. www.xillybus.com

On designs based upon PCIe (i.e. not Xillinux), the following diagram is displayed:

When Xillinux is used, “Open Block Design” opens the Zynq processor’s environment
– this block design part should not be modified in tasks related to Xillybus. Rather,
the block that is marked “blockdesign” should be opened (with a double-click), which
displays the following block diagram:

2.2 Notable elements in the block design

There are a few key elements that are worth noting in the Xillybus block design:

• Xillybus stream ports (“from host *” and “to host *”): These are standard AXI
Stream ports, consisting of the minimal set of signals: TDATA, TVALID and
TREADY. The name of each port in the block design is preceded with either
“from host” or “to host” in order to mark the interface’s direction. The rest of the

The guide to Xillybus Block Design Flow for non-HDL users (deprecated) 6

http://xillybus.com/

Xillybus Ltd. www.xillybus.com

port’s name in the block design is the device file’s name, as presented at the
host, minus the “xillybus” prefix.

For example, the device file named /dev/xillybus_write_32 on a Linux
host, or \\.\xillybus_write_32 on a Windows computer can be accessed
on the block design on the port named from host write 32.

• Loopbacks: Initially, from host write 32 is connected to to host read 32, and
from host write 8 is connected to to host read 8. This loops back any data writ-
ten to the device file that is named xillybus write 32 into xillybus read 32. The
same goes with the write 8 / read 8 pair. This loopback is what makes the “Hello
world” test described in the Getting Started guides working.

For integrating with application logic, the respective loopback connection should
be removed with Vivado’s block design GUI, and connections should be made
with the application logic’s suitable AXI Stream ports.

• In some cases, streams named xillybus smb and xillybus audio are connected
to the hierarchy above, since these are used for supporting the board’s audio
interface. These streams should be ignored (i.e. treated as the rest of the
signals going to the processor design hierarchy in the block design).

• “* open” ports for each Xillybus stream: Each of the AXI Stream ports has a
corresponding port with a open suffix, which is high (’1’) when the relevant
Xillybus device file is open on the host. This signal can optionally be used to
reset any application logic that is attached to the stream, so it’s in a known state
every time the device file is opened.

• The Clocking Wizard (stream clk gen) block: Generates a clock for the applica-
tion logic, which is based upon the clock that comes from Xillybus’ interface. All
of Xillybus IP core’s AXI Stream ports are synchronous with this block’s output.

It’s recommended not to make any changes on this block except for the fre-
quency of the output clock. In particular, the name of the block must remain
(stream clk gen), as certain scripts that are related to the implementation of the
design (the timing constraints) refer to this block’s output by its name.

See section 3.2 below.

• External ports, e.g. GPIO LEDS[0:3]: Ports that are connected to the hierarchy
above the block design. These connections should not be altered, but their
signals may be sampled by blocks within it. For example, in the Xillinux bundle,
ap clk goes to the upper hierarchy, but can be used inside the block design view
as well.

The guide to Xillybus Block Design Flow for non-HDL users (deprecated) 7

http://xillybus.com/

Xillybus Ltd. www.xillybus.com

Note that there are no ports for the mem 8 stream. Seekable streams are not pre-
sented in the block diagram. See section 4.3 for more about this.

The guide to Xillybus Block Design Flow for non-HDL users (deprecated) 8

http://xillybus.com/

Xillybus Ltd. www.xillybus.com

3
Integrating with application logic

3.1 The basics

Integration with application logic is done by using Vivado’s block design GUI: IP blocks
are added to the block design and connected as required.

For integration of IP blocks that are generated by Vivado’s High Level Synthesis (HLS),
please refer to section 6.

It should be noted that even though it’s often says in Xillybus’ documentation, that
the application logic in the FPGA communicates with the host through FIFOs, this
is not the case with the Block Design Flow (but only for the Verilog / VHDL design
flow). The glue logic in Xillybus’ IP Core that generates the AXI Stream interfaces
already includes FIFOs (among others for clock domain crossing between bus clk
and ap clk). As a result, the application logic is not required to deploy any FIFOs in
order to interface with Xillybus’ IP core when the Block Design Flow is used, unlike
the VHDL / Verilog design flow.

For data exchange between the FPGA and host, connect the application logic to the
dedicated AXI Stream ports (possibly after disconnecting loopbacks). These ports
present only the TDATA, TVALID and TREADY and in particular not the TLAST signal.
Consequently, each AXI Stream stream embodies an infinite data stream (as opposed
to a packet interface, which the TLAST signal would have allowed). This is consistent
with the infinite stream nature of Xillybus’ device files in general.

Xillybus streams can be used to exchange packets between the FPGA and the host,
as explained in section 6.3 in any of these two guides:

• Xillybus host application programming guide for Linux

The guide to Xillybus Block Design Flow for non-HDL users (deprecated) 9

http://xillybus.com/
http://xillybus.com/downloads/doc/xillybus_host_programming_guide_linux.pdf

Xillybus Ltd. www.xillybus.com

• Xillybus host application programming guide for Windows

3.2 Clocking

3.2.1 General

For the sake of simplicity, all signals connecting the user application logic to the Xilly-
bus IP Core must be driven by a single clock, which is generated by the Clocking
Wizard block in the block design. This clock (the “application clock”) is the Clocking
Wizard’s clk out1, which is also the Xillybus IP Core block’s ap clk input.

It’s often convenient to drive the entire user application block with this single clock, so
all of its internal logic as well as the interface depends on it. For example, logic which
is generated by Vivado HLS’ synthesizer has a single clock input (named ap clk).
Connecting this clock input to the Clocking Wizard’s output guarantees that the AXI
Stream port connections with Xillybus IP Core’s block works properly.

Note that FPGA tools sometimes refer to a clock’s frequency in terms of the frequency
itself, typically in MHz, and sometimes as the clock period, commonly in ns. The
clock’s frequency is the reciprocal of the clock period, so e.g. 100 MHz is equivalent
to a clock period of 10 ns.

3.2.2 Setting the application clock

The application clock’s frequency can be set to increase performance or as a step to-
wards achieving a working bitfile: A faster clock yields a higher processing throughput
(unless some other bottleneck limits the performance) but also demands more from
the FPGA’s logic elements and its utilization by Xilinx’ tools.

If the application clock’s frequency is chosen too high, the compilation of the project
into an FPGA bitstream file fails on the grounds of not meeting timing constraints. This
is also referred to as a “timing failure”. This situation means that the tools that carry
out the implementation failed to utilize the logic in such a way that ensures the reliable
operation, while the logic is driven by the clock’s frequencies as defined. The “timing
constraints” in this context are the requirements on the frequencies of the clocks in
the system.

Reducing the application clock’s frequency is always allowed (within the clock gener-
ator’s limits), but slows down the operation of the logic it drives.

In order to set the frequency of the application clock, double-click the block of the
Clock Wizard (stream clk gen) in the block design view. A configuration window will

The guide to Xillybus Block Design Flow for non-HDL users (deprecated) 10

http://xillybus.com/
http://xillybus.com/downloads/doc/xillybus_host_programming_guide_windows.pdf

Xillybus Ltd. www.xillybus.com

be opened in Vivado. Choose the “Output Clocks” tab and change the “Output Clock
Requested” frequency for clk out1. The frequency in the “Actual” column shows the
frequency that will be generated by the clock synthesizer. It may be slightly different
from the requested frequency, since the output clock is derived by multiplying the input
clock by a rational number, which is picked from a limited set of allowed values.

A small diversion from the requested frequency is harmless when the clock is used
only for the application logic and its interface with the Xillybus IP core.

Other parameters in the Clocking Wizard should not be changed.

3.2.3 The bus clk signal

Xillybus IP Core’s internal logic is driven by bus clk, which is exposed in the block
design merely to allow the derivation of the application clock from bus clk. There is
usually no other use for this signal, since the application logic only needs ap clk for its
internal logic and for interfacing with the Xillybus IP Core.

bus clk’s frequency may however be of interest for the sake of spotting throughput
bottlenecks. For example, if bus clk runs at 100 MHz, the maximal theoretic bandwidth
that may go through a 32-bit wide data interface is 400 MB/s, since Xillybus’ internal
data pipe runs at bus clk’s rate. If ap clk runs at a higher frequency and data is pushed
on each cycle of ap clk, it’s likely that the data pace will be slowed down by virtue of
the AXI Stream flow control signals (TREADY and TVALID).

For this reason, bus clk’s frequency should be taken into consideration when attempt-
ing to maximize an application’s throughput, in particular if the data interfaces are
expected to contain long bursts of (or continuous) data traffic.

The frequency of bus clk can be found under the “Clocking Options” tab, as the fre-
quency of the primary input clock, which is clk in1. This parameter informs the Clock-
ing Wizard what frequency to expect at its input, and can therefore be used for knowing
the frequency of bus clk for a specific Xillybus bundle.

The guide to Xillybus Block Design Flow for non-HDL users (deprecated) 11

http://xillybus.com/

Xillybus Ltd. www.xillybus.com

4
Acceleration / coprocessing best practices

4.1 Throughput vs. latency

There’s a significant difference between traditional hardware acceleration, which is
based upon enhanced instruction sets (e.g. the x86 family’s MMX command, crypto
extensions for AES, and ARM’s NEON extension) and acceleration with external hard-
ware, such as GPGPU and FPGA. Because the enhanced instruction sets are part of
the processor’s execution flow, they replace a long sequence of machine code instruc-
tions with a shorter one, and reduce the number of cycles required until the result is
available.

External hardware acceleration (FPGA acceleration included) on the other hand, does
not necessarily reduce the time until the result is available, due to the significant la-
tency of transporting the data to and from the external hardware. In addition, the
processing time may also be significantly longer than the processor’s, due to pipelin-
ing, and possibly a lower frequency of its clock.

Hence, the advantage of external hardware acceleration is not latency (how fast the
result is obtained) but throughput (the rate at which the data is handled). In order
to utilize this advantage, it’s important to maintain a flow of data going to and from
the accelerating hardware, rather than waiting for the results of one operation before
initiating the next one.

The technique for proper acceleration with an FPGA is elaborated in section 6.6 of
either of these two documents:

• Xillybus host application programming guide for Linux

• Xillybus host application programming guide for Windows

The guide to Xillybus Block Design Flow for non-HDL users (deprecated) 12

http://xillybus.com/
http://xillybus.com/downloads/doc/xillybus_host_programming_guide_linux.pdf
http://xillybus.com/downloads/doc/xillybus_host_programming_guide_windows.pdf

Xillybus Ltd. www.xillybus.com

4.2 Data width and performance

For applications that require relatively high data bandwidths, it’s recommended to use
32-bit wide streams (or wider) for the data-intensive streams. This is because 8 and
16-bit wide streams utilize the host’s bus less efficiently.

The reason is that the words are transported through the Xillybus internal data paths
at the rate of the bus. As a result, transporting an 8-bit word takes the same time slot
as a 32-bit word, making it effectively four times slower.

This also impacts other streams competing for the underlying transport at a given
time, since the data paths become occupied with slower data elements.

This guideline doesn’t apply to revision B/XL/XXL Xillybus IP cores, which transports
narrow streams with the same efficiency.

4.3 Do’s and don’ts

There are a few issues to note when working with the Block Design Flow:

• Streams with address ports (“address/data streams”, “seekable streams”) are
not supported in the Block Design Flow. If the Xillybus IP Core includes such
streams, they do not appear as ports in the GUI, but do appear normally on
the host side. Attempts to read from such a stream on the host will yield an
immediate end-of-file condition. A write() function call will not return, as there’s
no data sink on the other end.

It’s therefore recommended to avoid seekable streams in custom IP cores that
are intended for use with the Block Design Flow, in order to avoid confusion and
a slight waste of FPGA logic.

• Don’t make changes to the block named “stream clk gen” (the Clocking Wizard),
except for changing its output frequency if necessary, as described in section
3.2.2.

Making changes in the input clock’s frequency, making other changes in the
configuration, or removing it from the design and replacing it with a fresh Clock-
ing Wizard IP block may lead to failing to meet the timing constraints (possibly
because some timing constraints exceptions refer to the block’s name).

Setting an incorrect input frequency may lead to an unreliable behavior of the
FPGA design.

The guide to Xillybus Block Design Flow for non-HDL users (deprecated) 13

http://xillybus.com/

Xillybus Ltd. www.xillybus.com

• It’s important to pay attention to how the clocks are connected. In particular, not
not mixing between bus clk and ap clk.

• Make sure that the Xillybus streams are asynchronous, which is the case in the
default IP core and the autoset choice in custom IP cores when the stream’s
intended use is “Data exchange with coprocessor”.

This causes, among others, write() function calls that are made on the host
to return immediately if there is enough room for the data in the DMA buffers,
ensuring a smoother data transport and higher bandwidth performance.

For a better understanding of this topic, please refer to section 2 of either Xilly-
bus host application programming guide for Linux or Xillybus host application
programming guide for Windows.

The guide to Xillybus Block Design Flow for non-HDL users (deprecated) 14

http://xillybus.com/
http://xillybus.com/downloads/doc/xillybus_host_programming_guide_linux.pdf
http://xillybus.com/downloads/doc/xillybus_host_programming_guide_linux.pdf
http://xillybus.com/downloads/doc/xillybus_host_programming_guide_windows.pdf
http://xillybus.com/downloads/doc/xillybus_host_programming_guide_windows.pdf

Xillybus Ltd. www.xillybus.com

5
Applying a custom Xillybus IP core

A web application allows users to configure and download custom Xillybus IP cores,
choosing the number of streams as well their attributes directly on Xillybus’ website.
The specially generated custom IP core is then downloaded from the site, typically a
few minutes later.

In order to generate and download a custom IP core, please visit the IP Core Factory
at Xillybus’ website. The process is fairly straightforward, and if necessary, The guide
to defining a custom Xillybus IP core supplies complimentary information.

IMPORTANT:

Seekable streams (with “address/data” interface) are invisible in the Block Design
Flow, as the AXI Stream connections can’t support the address wires. Having
such streams in a core is fairly harmless, but causes a slight waste in FPGA logic
resources, and a possible confusion as they do appear on the host side, but not
in the block design.

Once the custom IP core is defined, generate and download its bundle.

The instructions in the custom IP core bundle’s README file relate to the Verilog /
VHDL design flow and should be disregarded. Instead, the following steps should be
taken:

• Create a new directory for the custom IP core’s files. This directory’s absolute
path must remain fixed throughout the use of this custom IP core, so it’s recom-
mended to put it where it won’t be deleted accidentally.

Unzip the downloaded custom IP core bundle into this directory.

• Open the block design in Vivado.

The guide to Xillybus Block Design Flow for non-HDL users (deprecated) 15

http://xillybus.com/
http://xillybus.com/custom-ip-factory
http://xillybus.com/downloads/doc/xillybus_custom_ip.pdf
http://xillybus.com/downloads/doc/xillybus_custom_ip.pdf

Xillybus Ltd. www.xillybus.com

• Save the block design’s view as a pdf file for reference: Right-click somewhere
in the block design’s area, and choose “Save as pdf file...”.

• Pick “Run Tcl Script...” under the Tools menu (on the main menu bar). Navigate
to the directory to which the custom IP core bundle was unzipped, and enter the
xillybus block subdirectory. Choose insertcore.tcl.

• The script will replace the existing Xillybus IP Core with the custom IP core,
and also attempt to reconnect the wiring that is not related to the application.
The objects may also move in the block design diagram due to an automatic
reorganization.

• Connect the application logic’s AXI Stream interfaces to the updated Xillybus IP
core.

• Compare with the pdf file that was created before running the script, and correct
as necessary.

None of the application logic related connections are reconnected, and
other connections may be missing as well.

• Verify that the captions below and under Xillybus IP Core’s block match the name
of the new IP core.

Note that the script finds blocks, ports and interfaces by their names. It may therefore
fail partially (and silently) in restoring connections if these names have been changed
by the user.

From this point, the implementation of the project can be done as before. Xillybus’
driver for the host (Linux and Windows alike) works with the custom IP core as well,
since it detects the new IP core’s configuration automatically.

Hence there’s no need to install anything on the host following the replacement with a
custom IP core.

For reference, these are the steps of execution of the insertcore.tcl script:

• Add the directory of the custom IP core to the list of IP Core repositories in
Vivado’s IP Catalog and force a rescan of the repositories, so the new custom
IP Core is discovered and added to the Catalog

• Remove the previous Xillybus IP from the block design, if such is present

• Add the custom IP core to the design, and upgrade its version if necessary

The guide to Xillybus Block Design Flow for non-HDL users (deprecated) 16

http://xillybus.com/

Xillybus Ltd. www.xillybus.com

• Attempt to reconnect wires going to the hierarchy above, as well as the wires
to stream clk gen’s block, by looking up a list of names, and interconnecting all
ports having these names, if present.

• On Zynq only: Set the bus address of the Xillybus IP core to its default values (a
4 kB segment starting at 0x50000000)

• Reset the synthesis run of the project, so the next implementation reflects the
changes made.

The guide to Xillybus Block Design Flow for non-HDL users (deprecated) 17

http://xillybus.com/

Xillybus Ltd. www.xillybus.com

6
Vivado HLS integration

6.1 Overview

This section demonstrates the compilation of a simple C function into an IP block, and
how it’s then integrated into Xillybus’ Block Design flow.

The example project, which this section is based upon, can be downloaded at

http://xillybus.com/downloads/hls-axis-starter-1.0.zip

It’s recommended to unzip the downloaded file into a directory that is easily related to
the Xillybus project, as it can’t be moved at later stages.

It’s important to distinguish between two different kind of C sources in the example
project:

• Code for execution: Runs on a computer or embedded platform (“host”), like any
computer program, and uses the FPGA to offload certain operations.

In the example project, the sample files can be found under the host/ subdirec-
tory.

• Code for synthesis: Intended for translation into logic by Vivado HLS.

In the example project, it can be found at coprocess/example/src/main.c

Unlike common C/C++ programming, the host program doesn’t call the synthesized
function. Rather, it organizes the data needed for executing the function in a data
structure and transmits it to the synthesized function, using a simple API, which is
described further on. At a later stage, it collects the return data as a data structure
sent from the synthesized function with a similar API.

The guide to Xillybus Block Design Flow for non-HDL users (deprecated) 18

http://xillybus.com/
http://xillybus.com/downloads/hls-axis-starter-1.0.zip

Xillybus Ltd. www.xillybus.com

6.2 HLS synthesis

The example code in C used in this section is outlined in section 6.4.

Start Vivado HLS, and open the HLS project: Pick “Open Project” on the welcome
page, navigate to where the HLS project bundle was unzipped to, and choose the
folder with the name “coprocess”.

Change the project’s part number: Pick Solution >Solution Settings... >Synthesis
and change the “Part Selection” to the intended FPGA.

Start a compilation of the project (“synthesize”) by picking Solution >Synthesis >Ac-
tive Solution (or click on the corresponding icon on the toolbar). A lot of text will appear
on the console, including several warnings (which is normal). No errors should occur.

A successful compilation is easily recognized by the following message among the
last few lines in HLS’ console tab:

Finished C synthesis.

A synthesis report will also appear above the console tab only when the synthesis
was successful.

For more information about Vivado HLS, please refer to its user guide (UG902).

6.3 Integration with the FPGA project

In Vivado HLS, select Solution >Export RTL and pick “IP Catalog” as Format Selec-
tion. For “Evaluate Generated RTL” choose Verilog, and don’t check either checkboxes
under this. Click OK.

This can take several minutes, and ends with something like

Finished export RTL.

Now open the Xillydemo project (as set up in section 2.1) in Vivado (i.e. not in Vivado
HLS), and open the Block Design. When using Xillinux (Zynq), open the block named
“blockdesign”.

Add the HLS IP block as follows: Right-click somewhere in the block design diagram
area, and pick “IP Settings...”. Under the “Repository Manager” tab, click the green
plus sign for adding a repository. Navigate to and select the same “coprocess” direc-
tory that was chosen in section 6.2 to open the HLS project. Vivado should respond

The guide to Xillybus Block Design Flow for non-HDL users (deprecated) 19

http://xillybus.com/

Xillybus Ltd. www.xillybus.com

with a pop-up window indicating that one repository was added. Click on “OK” buttons
twice to confirm.

Now add the IP block into the block design: Once again, right-click somewhere in the
block design diagram area. Pick “Add IP...” and select the Xillybus wrapper IP from
the list (typing “wrapper” in the search box is likely to make this easier).

A new block, named xillybus wrapper 0, will appear in the diagram. Disconnect the
wire going between to host read 32 and from host write 32 (i.e., disconnect the loop-
back).

Then connect the xillybus wrapper block as follows:

• data in with from host write 32

• data out with to host read 32

• ap rst n with to host read 32 open

• ap clk with ap clk (which is also the Clocking Wizard’s clk out1 output)

The result should be something like this (shown for a Xillinux-based block design):

The connection between ap rst n and to host read 32 open keeps the logic in reset
state inside the block of xillybus wrapper, unless the xillybus read 32 device file is
opened on the host (to host read 32 open is low when the file isn’t opened, and the
reset input is active low). Assuming that the software running on the host opens this
device file before attempting to communicate with this block, this ensures a consistent
response from the logic each time the software is run.

At this point, an implementation can be carried out to obtain the bitstream: At the
bottom of Vivado’s window, pick the “Design Runs” tab, right-click over “synth 1” and
pick “Reset Runs”. Confirm resetting synth 1.

The guide to Xillybus Block Design Flow for non-HDL users (deprecated) 20

http://xillybus.com/

Xillybus Ltd. www.xillybus.com

Then click “Generate Bitstream” at the left bar.

6.4 The example synthesis code

To clarify how HLS works with Xillybus, the example demonstrates the calculation of
a trigonometric sine and a simple operation with an integer, both covered in a simple
custom function, mycalc().

coprocess/example/src/main.c starts as follows:

#include <math.h>

#include <stdint.h>

extern float sinf(float);

int mycalc(int a, float *x2) {

*x2 = sinf(*x2);

return a + 1;

}

As usual, there are a couple of #include statements. The “math.h” inclusion is neces-
sary for the sine function.

And there’s the simple function, mycalc() which takes the role of the “synthesized
function”. It’s a very simple function that demonstrates arithmetic operations with
floating point as well as integer. The High-Level Synthesis Guide UG902 gives more
information on how to implement more useful tasks.

Next in main.c, there’s the wrapper function, xillybus wrapper(), which is the bridge
between the synthesized function and Xillybus, and is hence responsible for packing
and unpacking the data going back and forth.

In the example’s case, it accepts numbers in integer and floating point formats from
the host through a data stream, which is represented by the “data in” argument. It
returns the integer plus one and the (trigonometric) sine of the floating point number,
using the “data out” argument.

The guide to Xillybus Block Design Flow for non-HDL users (deprecated) 21

http://xillybus.com/

Xillybus Ltd. www.xillybus.com

void xillybus_wrapper(int *data_in, int *data_out) {

#pragma AP interface axis port=data_in

#pragma AP interface axis port=data_out

#pragma AP interface ap_ctrl_none port=return

uint32_t x1, tmp, y1;

float x2, y2;

// Handle input data

x1 = *data_in++;

tmp = *data_in++;

x2 = *((float *) &tmp); // Convert uint32_t to float

// Run the calculations

y1 = mycalc(x1, &x2);

y2 = x2; // This helps HLS in the conversion below

// Handle output data

tmp = *((uint32_t *) &y2); // Convert float to uint32_t

*data_out++ = y1;

*data_out++ = tmp;

}

xillybus wrapper() is declared with two pointers, both to a variable of type int. These
function arguments turn into two AXI Stream ports of the to-be IP block for inclusion
in the block design: Each of them has a #pragma statement informing HLS that they
should be considered interfaces of type “axis”.

“#pragma AP” and “#pragma HLS” are interchangeable – the former is the based upon
the C Synthesizer’s previous name (Auto Pilot), and the latter is seen in Xilinx’ recent
documentation.

Since “int” is considered a 32-bit word by HLS, the respective AXI Stream interfaces
will have a 32 bit wide data interface.

It’s of course possible to change the list of arguments as well as the pragmas to obtain
any set of AXI Stream inputs and outputs.

The pragma declaration for ap ctrl none tells the compiler not to generate a port for
the (nonexistent) return value.

And next, there’s some code for “execution”: The input data is fetched. Each *data in++
operation fetches a 32-bit word originating from the host. In the code shown, the first

The guide to Xillybus Block Design Flow for non-HDL users (deprecated) 22

http://xillybus.com/

Xillybus Ltd. www.xillybus.com

word is interpreted as an unsigned integer, and is put in x1. The second word is
treated as a 32-bit float, and is stored in x2.

Then there’s a function call to mycalc(), the “synthesized function”. This function re-
turns one result as its return value, and the second piece of data goes back by chang-
ing x2.

The wrapper function copies the updated value of x2 into a new variable, y2. This may
appear to be a redundant operation, which it would have been, had the compilation
of this code been intended for execution on a processor. When using HLS, this is
however necessary to make the compiler handle the conversion to float later on. This
reflects a somewhat quirky behavior of the HLS compiler, but this is one of the delicate
issues of using a pointer: Even though a memory array and a pointer to it are defined
in the C code, the HLS compiler doesn’t generate any of them. The use of the pointer
is just a hint on what we want to accomplish, and sometimes these hints need to
pushed a bit.

Finally, the results are sent back to the host: Each *data out++ sends a 32-bit word to
the computer, with due conversion from float.

Note that the *data in++ and *data out++ operators don’t really move pointers, and
there is no underlying memory array. Rather, these symbolize moving data from and
to the AXI stream interfaces (and eventually from and to Xillybus streams). Hence, the
only way the “data in” and “data out” variables are used is *data in++ and *data out++
(the High-Level Synthesis Guide offers other possibilities, in particular fixed sized ar-
rays).

Also note that since this code is translated into logic, and not run by a processor, the
only significance of these C commands is to produce the expected output stream of
data given the input stream of data. There is however no promise on when the data is
emitted (except for a range of possible latencies, given in HLS’ report).

Accordingly, the order of assignments of the input data is important in the sense that
it enforces how the incoming data is interpreted. On the other hand, since the first
output that is sent, y1, depends only on x1, which is the first input arriving, it’s allowed
that the first output will be sent before the second input has arrived. This contradicts
the intuitive sequential nature of code execution, but is meaningless in the context of
hardware acceleration, as the overall result is the same.

Furthermore, if the data in AXI stream is constantly fed with data, the wrapper function
“runs” repeatedly, as if it said:

The guide to Xillybus Block Design Flow for non-HDL users (deprecated) 23

http://xillybus.com/

Xillybus Ltd. www.xillybus.com

while (1) // This while-loop isn’t written anywhere!

xillybus_wrapper(data_in, data_out);

New data is fetched by virtue of the *data in++ commands as soon as possible, quite
likely filling the logic’s internal pipeline (which is longer than 70 stages in the example
project, according to HLS’ report). So unlike a processor’s execution of the code,
which would have fetched a pair of words, processed them, emitted two output words
and only then fetched the second pair of words, the HLS interpretation may very well
fetch 70 words at data in before anything comes out on the data out AXI stream.

6.5 Modifications on the C/C++ code for synthesis

Additional AXI Stream ports can be created by adding arguments to the wrapper func-
tion, and declaring these as interface ports, as shown in the example.

It’s of course possible to make other changes in the C code of the example design.

It’s recommended to implement the I/O in the same style as shown with *data in++ and
*data out++, or refer to the High-Level Synthesis Guide (UG902) for other possibilities.
It’s also a recommended source for learning about coding techniques.

IMPORTANT:

Don’t just click “Generate Bitstream” in Vivado after making changes: Launching
a repeated implementation of a bitstream without upgrading the block as detailed
below, is likely to result in a seemingly successful implementation of the bitfile, but
based upon an outdated version of the HLS block.

After changes have been made in the sample project, start over from “HLS synthesis”
in section 6.2, and go all the way to implementation with Vivado, plus updating the
HLS block in Vivado.

In other words:

• Vivado HLS: Run a compilation of the project in HLS. The HLS synthesizer al-
ways cleans up the files that are generated by previous compilations, before
starting a new one.

• Vivado HLS: Export into an IP Catalog bundle.

• In Vivado (not Vivado HLS), upgrade the block of xillybus wrapper (actually,
update it following its change): Open the block design view, and respond to the

The guide to Xillybus Block Design Flow for non-HDL users (deprecated) 24

http://xillybus.com/

Xillybus Ltd. www.xillybus.com

message at the top of the page, which says that the block needs upgrading. If
this message isn’t found, type “report ip status -name status” at the Tcl Console.
Click on the “Upgrade Selected” button at the bottom. This will be followed by a
dialog box confirming the successful upgrade, and one requesting to generate
output products. Click “Skip” on the second dialog box.

• Vivado: Verify that the design runs were invalidated: At the bottom of Vivado’s
window, pick the “Design Runs” tab. It should say Synthesis Out-of-date in the
Status column for synth 1.

• Vivado: Unless the design runs were invalidated, attempt the following: Re-
fresh the IP catalog: Right-click somewhere in the block design diagram area,
and pick “IP Settings...”. Under the “Repository Manager” tab, click the “Refresh
All” button at the bottom. It may also be necessary to click “Clear Cache” on the
“General” tab of the same dialog box. After this, go back to upgrading the block
of xillybus wrapper.

None of these actions are necessary if the design runs were found invalidated
in the previous item above.

• Vivado: Reset the synth 1 run

• Vivado: Generate bitstream

6.6 simple.c: An example of a host program

In the example project, there are sample host programs as two C files: simple.c and
practical.c. These demonstrate the host side of the project.

Both are written for a Linux host, for compilation with e.g.

gcc -O3 -Wall simple.c -o simple

They are however easily adapted for Windows (see below).

The guide to Xillybus Block Design Flow for non-HDL users (deprecated) 25

http://xillybus.com/

Xillybus Ltd. www.xillybus.com

IMPORTANT:

simple.c should not be used as an example for actual host programming, in
particular due its following drawbacks:

• Only one single element is handled. Looping on the write() and read() pair
of function calls will result in poor performance.

• The write() and read() operations’ return values must be checked for proper
operation. This has been omitted for simplicity, but renders the program
unreliable.

Section 6.7 outlines better coding techniques.

The simple.c file starts with #include statements:

#include <stdio.h>

#include <unistd.h>

#include <stdlib.h>

#include <sys/types.h>

#include <sys/stat.h>

#include <fcntl.h>

#include <stdint.h>

This is followed by the classic declaration of the main() function, along with declara-
tions of some variables:

int main(int argc, char *argv[]) {

int fdr, fdw;

struct {

uint32_t v1;

float v2;

} tologic, fromlogic;

The struct variables will be discussed below.

The program starts with opening the two device files, which behave like named pipes,
and are used for communication with the logic: /dev/xillybus read 32 and /dev/xilly-
bus write 32. Recall from the setting up of the Xillybus bundle that these two files are
generated by Xillybus’ driver.

As pointed out in section 6.3, ap rst n is connected to to host read 32 open in the
block design diagram, so opening /dev/xillybus read 32 gets the logic out of reset.

The guide to Xillybus Block Design Flow for non-HDL users (deprecated) 26

http://xillybus.com/

Xillybus Ltd. www.xillybus.com

This is why both files are opened before data transmission.

fdr = open("/dev/xillybus_read_32", O_RDONLY);

fdw = open("/dev/xillybus_write_32", O_WRONLY);

if ((fdr < 0) || (fdw < 0)) {

perror("Failed to open Xillybus device file(s)");

exit(1);

}

Next, to the actual execution. The “tologic” structure is populated with a couple of
values for transmission to the logic, after which it’s written directly from memory to
xillybus write 32. Effectively, this writes 8 bytes, or more precisely, two 32-bit words.
The first is the integer 123 put in tologic.v1, and the second is the float in tologic.v2.
The tologic structure was hence set up to match the logic expectation of data: One
integer by the first *data in++ instruction, and one float by the second.

tologic.v1 = 123;

tologic.v2 = 0.78539816; // ˜ pi/4

// Not checking return values of write() and read(). This must

// be done in a real-life program to ensure reliability.

write(fdw, (void *) &tologic, sizeof(tologic));

read(fdr, (void *) &fromlogic, sizeof(fromlogic));

printf("FPGA said: %d + 1 = %d and also "

"sin(%f) = %f\n",

tologic.v1, fromlogic.v1,

tologic.v2, fromlogic.v2);

Recall from section 6.4 that the wrapper code fetches two 32-bit words from the
data in stream. The first word goes to “x1”, and the second to “tmp”, and then “tmp”
is immediately converted into a float. This matches the two 32-bit elements of the
“tologic” structure.

This is followed by reading back the data from the FPGA. The same principle applies
for “fromlogic”.

simple.c ends with a common wrap-up:

The guide to Xillybus Block Design Flow for non-HDL users (deprecated) 27

http://xillybus.com/

Xillybus Ltd. www.xillybus.com

close(fdr);

close(fdw);

return 0;

}

It is crucial to match the amount of data sent to /dev/xillybus write 32 with the number
of *data in++ operations in the wrapper function. If there is too little data sent, the syn-
thesized function may not execute at all. If there’s too much, the following execution
will probably be faulty.

In this example, the same structure format was chosen for “tologic” and “fromlogic”,
but there’s no need to stick to this. It’s just important that the data sent and received is
in sync with the wrapper function’s number of *data in++ and *data out++ operations.

The execution of this program should be

./simple

FPGA said: 123 + 1 = 124 and also sin(0.785398) = 0.707107

Finally, a note to Windows users, who may need to make all or some of the following
adjustments:

• Change the file name string from “/dev/xillybus read 32” to “\\\\.\\xillybus read 32”
(the actual file name on Windows is \\.\xillybus read 32, but escaping is nec-
essary). The second file name changes to “\\\\.\\xillybus write 32”.

• Replace the #include statement for unistd.h with io.h

• Replace the function calls to open(), read(), write() and close() with open(),
read(), write() and close()

6.7 practical.c: A practical host program

The simple.c example outlines data exchange in a concise manner, but several changes
are required in practical system:

The following differences are most notable:

• Rather than generating a single set of data for processing, an array of structures
is allocated and sent. Likewise, an array of data is received from the logic. This

The guide to Xillybus Block Design Flow for non-HDL users (deprecated) 28

http://xillybus.com/

Xillybus Ltd. www.xillybus.com

reduces the I/O overhead as well as the impact of latencies, which is caused
by software and hardware. This is a crucial method for gaining a performance
improvement with hardware acceleration.

• The program forks into two processes, one for writing and one for reading data.
Making these two tasks independent prevents the processing from stalling due
to lack of data to process by either side. This independency can be achieved
with threads (in particular in Windows) or using the select() function call as well.

• The read() and write() function calls are made correctly, so as to ensure reliable
I/O. The while-loops that are added for this purpose may appear cumbersome,
but they are necessary to respond correctly to partial completions of these func-
tion calls (not all bytes read or written) which is a frequent case under load. The
EINTR error is also handled as necessary to react properly to POSIX signals,
which may be sent to the running processes, possibly accidentally.

Now to a brief walkthrough of practical.c. First, headers:

#include <stdio.h>

#include <unistd.h>

#include <stdlib.h>

#include <errno.h>

#include <sys/types.h>

#include <sys/stat.h>

#include <fcntl.h>

#include <stdint.h>

And the same structure, plus defining N, the number of elements per chunk of data.

#define N 1000

struct packet {

uint32_t v1;

float v2;

};

A common main() function definition and some variables:

The guide to Xillybus Block Design Flow for non-HDL users (deprecated) 29

http://xillybus.com/

Xillybus Ltd. www.xillybus.com

int main(int argc, char *argv[]) {

int fdr, fdw, rc, donebytes;

char *buf;

pid_t pid;

struct packet *tologic, *fromlogic;

int i;

float a, da;

Files opened like before:

fdr = open("/dev/xillybus_read_32", O_RDONLY);

fdw = open("/dev/xillybus_write_32", O_WRONLY);

if ((fdr < 0) || (fdw < 0)) {

perror("Failed to open Xillybus device file(s)");

exit(1);

}

The actual execution begins with a fork() into two processes.

pid = fork();

if (pid < 0) {

perror("Failed to fork()");

exit(1);

}

The father process prepares the data for processing and writes it towards the FPGA. It
closes the read file descriptor, since it’s not used by this process. Keeping it open will
make the device file remain open until both processes have closed their file descriptor
(or exited), which isn’t the desired behavior here.

if (pid) {

close(fdr);

tologic = malloc(sizeof(struct packet) * N);

if (!tologic) {

fprintf(stderr, "Failed to allocate memory\n");

exit(1);

}

Next, filling an array of structs with data. This explains why it made sense to define a
structure for each set of data for processing.

The guide to Xillybus Block Design Flow for non-HDL users (deprecated) 30

http://xillybus.com/

Xillybus Ltd. www.xillybus.com

// Fill array of structures with just some numbers

da = 6.283185 / ((float) N);

for (i=0, a=0.0; i<N; i++, a+=da) {

tologic[i].v1 = i;

tologic[i].v2 = a;

}

buf = (char *) tologic;

Note that “buf” is defined as a pointer to a buffer of char, pointing at the array of
structures. This conversion is required, since the while-loop that sends the data treats
the buffer as any chunk of data for transmission.

Next, the while-loop for writing data. It may seem unnecessarily complicated, but is
the shortest way to ensure data is written reliably. It’s suggested to adopt this code as
is in practical applications.

donebytes = 0;

while (donebytes < sizeof(struct packet) * N) {

rc = write(fdw, buf + donebytes,

sizeof(struct packet) * N - donebytes);

if ((rc < 0) && (errno == EINTR))

continue;

if (rc <= 0) {

perror("write() failed");

exit(1);

}

donebytes += rc;

}

In this example, only a single chunk is sent (and received on the other end). In practi-
cal code, it’s correct to loop on the two pieces of code above.

Performance tests have shown that a chunk size of 32 kBytes usually gives the best
results.

As only one chunk is sent in this example, the process exits. Sleeping during one
second before closing the file ensures that the logic doesn’t reset before all data has
been drained from it. This is meaningless when the block design is as shown in section

The guide to Xillybus Block Design Flow for non-HDL users (deprecated) 31

http://xillybus.com/

Xillybus Ltd. www.xillybus.com

6.3, since ap rst n goes to to host read 32 open, and from host write 32 open isn’t
connected at all.

Nevertheless, this demonstrates a good convention of not closing the file descriptor
immediately, unless quitting fast is required. This can save some confusion when the
project becomes more elaborate.

sleep(1); // Let the output drain

close(fdw);

return 0;

Next we have the child process, starting in a similar way:

} else {

close(fdw);

fromlogic = malloc(sizeof(struct packet) * N);

if (!fromlogic) {

fprintf(stderr, "Failed to allocate memory\n");

exit(1);

}

buf = (char *) fromlogic;

Once again, this is the recommended way to read data from a device file:

The guide to Xillybus Block Design Flow for non-HDL users (deprecated) 32

http://xillybus.com/

Xillybus Ltd. www.xillybus.com

donebytes = 0;

while (donebytes < sizeof(struct packet) * N) {

rc = read(fdr, buf + donebytes,

sizeof(struct packet) * N - donebytes);

if ((rc < 0) && (errno == EINTR))

continue;

if (rc < 0) {

perror("read() failed");

exit(1);

}

if (rc == 0) {

fprintf(stderr, "Reached read EOF!? Should never happen.\n");

exit(0);

}

donebytes += rc;

}

And then data is printed out:

for (i=0; i<N; i++)

printf("%d: %f\n", fromlogic[i].v1, fromlogic[i].v2);

sleep(1); // Let the output drain

close(fdr);

return 0;

}

}

Once again, the process sleeps for one second before closing the file descriptor,
and once again, it isn’t necessary in this specific case: Closing the file descriptor
will indeed reset the logic, but it’s harmless in this case because all output has been
fetched, by the time this point is reached.

As mentioned before, unless quitting quickly is beneficial, this one second sleep may
save confusion, in particular if other output streams are generated, e.g. for debugging.

The guide to Xillybus Block Design Flow for non-HDL users (deprecated) 33

http://xillybus.com/

Xillybus Ltd. www.xillybus.com

6.8 Design considerations

6.8.1 Working with multiple AXI streams

The example project shows the basic case of one stream in each direction. It’s how-
ever trivial to add streams for input and/or output on the IP block by adding arguments
to the wrapper function, along with pragmas for declaring these as AXI streams.

For example, three input streams instead of one:

void xillybus_wrapper(int *d1, int *d2, int *d3, int *data_out) {

#pragma AP interface axis port=d1

#pragma AP interface axis port=d2

#pragma AP interface axis port=d3

#pragma AP interface axis port=data_out

#pragma AP interface ap_ctrl_none port=return

*data_out++ = thefunc(*d1++, *d2++, *d3++);

}

Adding streams to the Xillybus IP core is equally simple, by configuring a custom IP
core, as explained in section 5.

Additional streams can be useful in a variety of scenarios, among others:

• Sending data and meta information in separate streams. For example, if the data
needs to be divided into packets, send their lengths in one dedicated stream,
and the data in another. This allows sending the beginning of the packet before
its length is known.

• Sending data that is naturally arranged separately, e.g. pixel scanning of differ-
ent images (more on this below).

• For debugging: Sending intermediate data to the host for verification.

When working with multiple streams, it’s important to keep them all in mind: The
logic’s execution flow may stall if any input stream lacks data, or if an output stream’s
respective device file isn’t opened (or suffers overflow with data). This is important
in particular if an output stream is intended for debugging: When using the system
for normal opertaion, it’s easy to forget the stream that is intended for debugging.
Because the data from this stream isn’t consumed, this leads to a confusing halt of
execution, usually after a few data cycles.

The guide to Xillybus Block Design Flow for non-HDL users (deprecated) 34

http://xillybus.com/

Xillybus Ltd. www.xillybus.com

It’s often sensible to feed the logic hardware with data in ways that may seem unsuit-
able at first sight. For example, the three-input example shown above can be useful
for an image processing algorithm that requires three elements of data for each oper-
ation: Suppose that an image is scanned from left to right, top to bottom. For the sake
of generating pixel output, the algorithm needs the respective pixels from two previous
images along with the current image’s pixel. In such a case, it possible to send the
current image through one stream to the FPGA, and the two previous images through
two other streams in parallel.

This may seem as a waste of I/O data bandwidth and a lot of unnecessary memory
copying. In particular, it may feel wrong that the processor is involved so much in
“shuffling data”. Subjective perceptions aside, the implementation of memory copying
is a highly optimized task on every modern processor architecture, and the processor
is often loaded with other application-related tasks, which makes the memory copying
load negligible.

So even though feeding the logic with data directly is suboptimal from a resource
utilization point of view, the extra load on the processor is usually rather small, given
that it usually has other heavy-duty tasks to handle. This is often a reasonable price
for simplifying the design significantly.

6.8.2 The application clock’s frequency

The logic generated by HLS is driven by the application clock of the block design,
which is generated by the block of stream clk gen. As this clock is the timebase for
the logic, its execution rate is proportional to the clock’s frequency. Unless the data
transport of the AXI stream ports become a bottleneck, a higher application clock
frequency means a proportional speedup of the processing throughput.

There’s however a limit to how high the application clock’s frequency can go, depend-
ing on the logic resources of the FPGA and how they have been utilized to implement
the required tasks. These are the relevant milestones in the design process:

1. Vivado HLS allows the user to set the intended frequency of the clock for the
design, specifying the desired frequency for the application clock (with Solution
>Solution Settings). This parameter is used by HLS merely as a hint, allowing
it to make extra efforts for producing faster logic when necessary and possible.

2. When Vivado HLS finishes its compilation, it presents an estimation of the clock’s
frequency that is likely to be attainable (under “Timing” in the “Performance Es-
timates” section of the Synthesis tab of HLS’ GUI).

The guide to Xillybus Block Design Flow for non-HDL users (deprecated) 35

http://xillybus.com/

Xillybus Ltd. www.xillybus.com

3. The user sets the frequency of the application clock in Vivado’s block design,
as described in section 3.2 (section 3.2.2 in particular). The natural choice is
the clock’s frequency, as estimated in item 2, or lower. Note that this is done in
Vivado, not Vivado HLS.

4. When Vivado finishes the implementation of the entire design into a bitstream for
the FPGA, it informs the user whether it was successful in organizing the logic
to satisfy all requirements that are related to the clock. That includes satisfying
the clock’s frequency, as set in item 3.

So it boils down to the last milestone, and if Vivado was able to meet the timing
constraints that relate to the chosen frequency of the application clock in item 3.

The default clock period in HLS as well as stream clk gen, is 10 ns (100 MHz). It’s
often best to remain with this choice, unless:

• Vivado fails to meet timing constraints, in which case a slower clock should be
chosen.

• If there’s a motivation to increase the processing throughput, in which case at-
tempts to require a faster clock should be made. This is often an iterative pro-
cess of tuning the clock’s frequency as well as making changes in the design
itself and HLS pragmas for reaching improved results.

6.8.3 Resetting the logic

As the C/C++ code is translated into logic, it doesn’t actually run, but rather maintains
a state of its own execution flow. In order to make the logic mimic the behavior of a
processor’s execution of the program, it’s among others essential to make sure that
the execution starts from the beginning of the program. This is achieved by resetting
the logic.

The intuitive behavior, in most cases, is that the program in the FPGA starts from its
beginning when the host’s program starts executing. Since any process that runs on
the host opens the device files before accessing them, and these files are necessarily
closed at least when the process terminates, it’s natural to reset the logic when one
or more device files are closed.

Each stream in Xillybus IP Core has an * open port, which is high (’1’) when the
respective device file is opened. Since the HLS block has an active-low reset input
ap rst n (by default), connecting the * open output directly to the ap rst n input yields

The guide to Xillybus Block Design Flow for non-HDL users (deprecated) 36

http://xillybus.com/

Xillybus Ltd. www.xillybus.com

the desired result: When the file is closed, the * open signal is low (’0’). This holds
the logic in the reset state.

It may be desirable to combine several * open ports in order to hold the logic until all
device files are opened, or until any of them is opened. This is achieved by adding
simple logic gate blocks, which are available on Vivado’s IP catalog. The choice of
how to generate the reset signal depends on how the host program is set up.

Either way, it’s important to make sure that the host doesn’t attempt to exchange
data with an HLS block until it has opened device files as required to ensure that the
reset signal becomes inactive. For simplicity, it’s best to open all device files that are
relevant to an HLS block before starting any data exchange with it, and close them all
for cleaning up.

The guide to Xillybus Block Design Flow for non-HDL users (deprecated) 37

http://xillybus.com/

	Introduction
	General guidelines
	Getting started
	Notable elements in the block design

	Integrating with application logic
	The basics
	Clocking
	General
	Setting the application clock
	The bus_clk signal

	Acceleration / coprocessing best practices
	Throughput vs. latency
	Data width and performance
	Do's and don'ts

	Applying a custom Xillybus IP core
	Vivado HLS integration
	Overview
	HLS synthesis
	Integration with the FPGA project
	The example synthesis code
	Modifications on the C/C++ code for synthesis
	simple.c: An example of a host program
	practical.c: A practical host program
	Design considerations
	Working with multiple AXI streams
	The application clock's frequency
	Resetting the logic

